#### Filter Results:

#### Publication Year

1984

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

An analytical approach is presented for determining the response of a neuron or of the activity in a network of connected neurons, represented by systems of nonlinear ordinary stochastic differential equations--the Fitzhugh-Nagumo system with Gaussian white noise current. For a single neuron, five equations hold for the first- and second-order central… (More)

Many neurons have epochs in which they fire action potentials in an approximately periodic fashion. To see what effects noise of relatively small amplitude has on such repetitive activity we recently examined the response of the Hodgkin-Huxley (HH) space-clamped system to such noise as the mean and variance of the applied current vary, near the bifurcation… (More)

The coding of odor intensity by an olfactory receptor neuron model was studied under steady-state stimulation. Our model neuron is an elongated cylinder consisting of the following three components: a sensory dendritic region bearing odorant receptors, a passive region consisting of proximal dendrite and cell body, and an axon. First, analytical solutions… (More)

For the Fitzhugh-Nagumo system with space-time white noise, we use numerical methods to consider the generation of action potentials and the reliability of transmission in the presence of noise. The accuracy of simulated solutions is verified by comparison with known exact analytical results. Noise of small amplitude may prevent transmission directly,… (More)

- Henry C Tuckwell, Nicholas J Penington
- Progress in neurobiology
- 2014

Serotonergic neurons of the dorsal raphe nucleus, with their extensive innervation of limbic and higher brain regions and interactions with the endocrine system have important modulatory or regulatory effects on many cognitive, emotional and physiological processes. They have been strongly implicated in responses to stress and in the occurrence of major… (More)

Serotonergic neurons of the dorsal raphe nuclei, with their extensive innervation of nearly the whole brain have important modulatory effects on many cognitive and physiological processes. They play important roles in clinical depression and other psychiatric disorders. In order to quantify the effects of serotonergic transmission on target cells it is… (More)

We investigate the optimal control of neuronal spiking activity for neurons receiving a class of random synaptic inputs, characterized by a positive parameter alpha. Optimal control signals and optimal variances are found exactly for the diffusion process approximating an integrate and fire model. When synaptic inputs are "sub-Poisson" (alpha<0.5), we find… (More)

We present for the first time an analytical approach for determining the time of firing of multicomponent nonlinear stochastic neuronal models. We apply the theory of first exit times for Markov processes to the Fitzhugh-Nagumo system with a constant mean gaussian white noise input, representing stochastic excitation and inhibition. Partial differential… (More)

We investigate the properties of a simple discrete time stochastic epidemic model. The model is Markovian of the SIR type in which the total population is constant and individuals meet a random number of other individuals at each time step. Individuals remain infectious for R time units, after which they become removed or immune. Individual transition… (More)