Learn More
A thermostable DNA polymerase was used in an in vitro DNA amplification procedure, the polymerase chain reaction. The enzyme, isolated from Thermus aquaticus, greatly simplifies the procedure and, by enabling the amplification reaction to be performed at higher temperatures, significantly improves the specificity, yield, sensitivity, and length of products(More)
Two new methods were used to establish a rapid and highly sensitive prenatal diagnostic test for sickle cell anemia. The first involves the primer-mediated enzymatic amplification of specific beta-globin target sequences in genomic DNA, resulting in the exponential increase (220,000 times) of target DNA copies. In the second technique, the presence of the(More)
Type 1 diabetes (T1D) is a common autoimmune disorder that arises from the action of multiple genetic and environmental risk factors. We report the findings of a genome-wide association study of T1D, combined in a meta-analysis with two previously published studies. The total sample set included 7,514 cases and 9,045 reference samples. Forty-one distinct(More)
1 T he discovery of the association between HLA in the major histocompatibility complex (MHC) on chromosome 6p21 with type 1 diabetes, but not with type 2 diabetes, suggested that these disease entities were of different genetic background and pathogenesis. The discovery that some individuals with diabetes had autoantibodies in their blood provided(More)
Allelic sequence variation has been analysed by synthetic oligonucleotide hybridization probes which can detect single base substitutions in human genomic DNA. An allele-specific oligonucleotide (ASO) will only anneal to sequences that match it perfectly, a single mismatch being sufficient to prevent hybridization under appropriate conditions. To improve(More)
The present study investigated the association between variants in the vitamin D receptor gene (VDR) and protein tyrosine phosphatase, non-receptor type 2 gene (PTPN2), as well as an interaction between VDR and PTPN2 and the risk of islet autoimmunity (IA) and progression to type 1 diabetes (T1D). The Diabetes Autoimmunity Study in the Young (DAISY) has(More)
The highly polymorphic human leukocyte antigen (HLA) class I molecules help to determine the specificity and repertoire of the immune response. The great diversity of these antigen-binding molecules confers differential advantages in responding to pathogens, but presents a major obstacle to distinguishing HLA allele-specific effects. HLA class I supertypes(More)
A method is described for directly cloning enzymatically amplified segments of genomic DNA into an M13 vector for sequence analysis. A 110-base pair fragment of the human beta-globin gene and a 242-base pair fragment of the human leukocyte antigen DQ alpha locus were amplified by the polymerase chain reaction method, a procedure based on repeated cycles of(More)
The characterization of genetic variation at the DNA level has generated significant advances in gene and disease mapping, and in the forensic identification of individuals. The most common method of DNA analysis, that of restriction fragment length polymorphism (RFLP), requires microgram amounts of relatively undegraded DNA for multi-locus typing, and(More)