Henrique Lorenzo

Learn More
Ground Penetrating Radar (GPR) systems fall into the category of ultra-wideband (UWB) devices. Most GPR equipment covers a frequency range between an octave and a decade by using short-time pulses. Each signal recorded by a GPR gathers a temporal log of attenuated and distorted versions of these pulses (due to the effect of the propagation medium) plus(More)
The urgent need to increase productivity and competitiveness demands from sporting craft builders the incorporation of newer design and manufacturing technologies, as CAD/CAM and CNC machining systems. This paper describes the sporting boats' 3D surface modelling, needed for automated manufacturing processes, throug terrestrial laser scanner technology. The(More)
Over the past few years, there has been an increasing need for tools that automate the processing of as-built 3D laser scanner data. Given that a fast and active dimensional analysis of constructive components is essential for construction monitoring, this paper is particularly focused on the detection and segmentation of columns in building interiors from(More)
Most Ground Penetrating Radars (GPR) cover a wide frequency range by emitting very short time wavelets. In this work, we study in detail the wavelet emitted by two bowtie GPR antennas with nominal frequencies of 800 MHz and 1 GHz. Knowledge of this emitted wavelet allows us to extract as much information as possible from recorded signals, using advanced(More)
Landmine clearance is an ongoing problem that currently affects millions of people around the world. This study evaluates the effectiveness of ground penetrating radar (GPR) in demining and unexploded ordnance detection using 2.3-GHz and 1-GHz high-frequency antennas. An automated detection tool based on machine learning techniques is also presented with(More)
  • 1