Learn More
We describe improvements of the currently most popular method for prediction of classically secreted proteins, SignalP. SignalP consists of two different predictors based on neural network and hidden Markov model algorithms, where both components have been updated. Motivated by the idea that the cleavage site position and the amino acid composition of the(More)
Determining the subcellular localization of a protein is an important first step toward understanding its function. Here, we describe the properties of three well-known N-terminal sequence motifs directing proteins to the secretory pathway, mitochondria and chloroplasts, and sketch a brief history of methods to predict subcellular localization based on(More)
We provide a unified overview of methods that currently are widely used to assess the accuracy of prediction algorithms, from raw percentages, quadratic error measures and other distances, and correlation coefficients, and to information theoretic measures such as relative entropy and mutual information. We briefly discuss the advantages and disadvantages(More)
A hidden Markov model of signal peptides has been developed. It contains submodels for the N-terminal part, the hydrophobic region, and the region around the cleavage site. For known signal peptides, the model can be used to assign objective boundaries between these three regions. Applied to our data, the length distributions for the three regions are(More)
A method to predict lipoprotein signal peptides in Gram-negative Eubacteria, LipoP, has been developed. The hidden Markov model (HMM) was able to distinguish between lipoproteins (SPaseII-cleaved proteins), SPaseI-cleaved proteins, cytoplasmic proteins, and transmembrane proteins. This predictor was able to predict 96.8% of the lipoproteins correctly with(More)
Translation in eukaryotes does not always start at the first AUG in an mRNA, implying that context information also plays a role. This makes prediction of translation initiation sites a non-trivial task, especially when analysing EST and genome data where the entire mature mRNA sequence is not known. In this paper, we employ artificial neural networks to(More)
BACKGROUND Proteins carrying twin-arginine (Tat) signal peptides are exported into the periplasmic compartment or extracellular environment independently of the classical Sec-dependent translocation pathway. To complement other methods for classical signal peptide prediction we here present a publicly available method, TatP, for prediction of bacterial Tat(More)
We have developed a new method for the identification of signal peptides and their cleavage sites based on neural networks trained on separate sets of prokaryotic and eukaryotic sequences. The method performs significantly better than previous prediction schemes, and can easily be applied to genome-wide data sets. Discrimination between cleaved signal(More)
Hidden Markov models were introduced in the beginning of the 1970's as a tool in speech recognition. During the last decade they have been found useful in addressing problems in computational biology such as characterising sequence families, gene finding, structure prediction and phylogenetic analysis. In this paper we propose several measures between(More)