Learn More
In decerebrated, nonanesthetized cats, we made intracellular whole-cell recordings and extracellular cell-attached recordings from granule cells in the cerebellar C3 zone. Spontaneous EPSPs had large, relatively constant peak amplitudes, whereas IPSPs were small and did not appear to contribute substantially to synaptic integration at a short time scale. In(More)
Information storage in neural circuits depends on activity-dependent alterations in synaptic weights, such as long-term potentiation (LTP) and long-term depression (LTD). Bidirectional synaptic plasticity endows synapses with mechanisms for rapid reversibility, but it remains unclear how it correlates with reversibility in behavioral learning and whether(More)
The highly specific relationships between parallel fiber (PF) and climbing fiber (CF) receptive fields in Purkinje cells and interneurons suggest that normal PF receptive fields are established by CF-specific plasticity. To test this idea, we used PF stimulation that was either paired or unpaired with CF activity. Conspicuously, unpaired PF stimulation that(More)
The cutaneous parallel fiber (PF) receptive fields of cerebellar stellate and basket cells in the cerebellar C3 zone in vivo are normally very small but can be dramatically enlarged by climbing fiber (CF)-dependent plasticity. To analyze the effects of this receptive field plasticity, we present for the first time whole-cell patch-clamp recordings from(More)
Initial investigations of the cerebellar microcircuit inspired the Marr-Albus theoretical framework of cerebellar function. We review recent developments in the experimental understanding of cerebellar microcircuit characteristics and in the computational analysis of Marr-Albus models. We conclude that many Marr-Albus models are in effect adaptive filters,(More)
In cats decerebrated at the intercollicular level, the cutaneous parallel fibre receptive fields of Purkinje cells, molecular layer interneurons and Golgi cells in the cerebellar C3 zone were delineated by natural stimulation of the skin during extracellular unitary recordings. The locations of these receptive fields were compared with the climbing fibre(More)
In several theories of the function of the cerebellum in motor control, the mossy-fiber-parallel fiber input has been suggested to provide information used in the control of ongoing movements whereas the role of climbing fibers is to induce plastic changes of parallel fiber (PF) synapses on Purkinje cells. From studies of climbing fibers during the last few(More)
In recent years there has been an increased interest in the function of inhibitory interneurons. In the cerebellum this interest has been paired with successes in obtaining recordings from these neurons in vivo and genetic manipulations to probe their function during behavioral tasks such as motor learning. This review focuses on a synthesis of recent(More)
The computational principles underlying the processing of sensory-evoked synaptic inputs are understood only rudimentarily. A critical missing factor is knowledge of the activation patterns of the synaptic inputs to the processing neurons. Here we use well-defined, reproducible skin stimulation to describe the specific signal transformations that occur in(More)
1. The input characteristics and distribution of climbing fibre field potentials evoked by electrical stimulation of various parts of the skin were investigated in the cerebellum of barbiturate anaesthetized rats. 2. Climbing fibre responses were recorded in sagittally oriented microelectrode tracks across the mediolateral width of the anterior lobe.(More)