Learn More
In decerebrated, nonanesthetized cats, we made intracellular whole-cell recordings and extracellular cell-attached recordings from granule cells in the cerebellar C3 zone. Spontaneous EPSPs had large, relatively constant peak amplitudes, whereas IPSPs were small and did not appear to contribute substantially to synaptic integration at a short time scale. In(More)
The highly specific relationships between parallel fiber (PF) and climbing fiber (CF) receptive fields in Purkinje cells and interneurons suggest that normal PF receptive fields are established by CF-specific plasticity. To test this idea, we used PF stimulation that was either paired or unpaired with CF activity. Conspicuously, unpaired PF stimulation that(More)
Information storage in neural circuits depends on activity-dependent alterations in synaptic weights, such as long-term potentiation (LTP) and long-term depression (LTD). Bidirectional synaptic plasticity endows synapses with mechanisms for rapid reversibility, but it remains unclear how it correlates with reversibility in behavioral learning and whether(More)
The cutaneous parallel fiber (PF) receptive fields of cerebellar stellate and basket cells in the cerebellar C3 zone in vivo are normally very small but can be dramatically enlarged by climbing fiber (CF)-dependent plasticity. To analyze the effects of this receptive field plasticity, we present for the first time whole-cell patch-clamp recordings from(More)
We present an electrode, based on structurally controlled nanowires, as a first step towards developing a useful nanostructured device for neurophysiological measurements in vivo. The sensing part of the electrode is made of a metal film deposited on top of an array of epitaxially grown gallium phosphide nanowires. We achieved the first functional testing(More)
Initial investigations of the cerebellar microcircuit inspired the Marr-Albus theoretical framework of cerebellar function. We review recent developments in the experimental understanding of cerebellar microcircuit characteristics and in the computational analysis of Marr-Albus models. We conclude that many Marr-Albus models are in effect adaptive filters,(More)
The human hand has so many degrees of freedom that it may seem impossible to control. A potential solution to this problem is "synergy control" which combines dimensionality reduction with great flexibility. With applicability to a wide range of tasks, this has become a very popular concept. In this review, we describe the evolution of the modern concept(More)
In several theories of the function of the cerebellum in motor control, the mossy-fiber-parallel fiber input has been suggested to provide information used in the control of ongoing movements whereas the role of climbing fibers is to induce plastic changes of parallel fiber (PF) synapses on Purkinje cells. From studies of climbing fibers during the last few(More)
The function of chronic brain machine interfaces depends on stable electrical contact between neurons and electrodes. A key step in the development of interfaces is therefore to identify implant configurations that minimize adverse long-term tissue reactions. To this end, we here characterized the separate and combined effects of implant size and fixation(More)
The computational principles underlying the processing of sensory-evoked synaptic inputs are understood only rudimentarily. A critical missing factor is knowledge of the activation patterns of the synaptic inputs to the processing neurons. Here we use well-defined, reproducible skin stimulation to describe the specific signal transformations that occur in(More)