Learn More
Cross-communication between different signalling systems allows the integration of the great diversity of stimuli that a cell receives under varying physiological situations. The transactivation of epidermal growth factor receptor (EGFR)-dependent signalling pathways upon stimulation of G-protein-coupled receptors (GPCRs), which are critical for the(More)
Transduction of a mitogenic signal from the cell membrane to the nucleus involves the adapter proteins SHC and Grb2, which mediate activation of the Ras/mitogen-activated protein (MAP) kinase pathway. In contrast to receptor tyrosine kinases (RTKs), the signalling steps leading to Ras/MAP kinase activation by G-protein-coupled receptors (GPCRs) are still(More)
The epidermal growth factor receptor (EGFR) tyrosine kinase recently was identified as providing a link to mitogen-activated protein kinase (MAPK) in response to G protein-coupled receptor (GPCR) agonists in Rat-1 fibroblasts. This cross-talk pathway is also established in other cell types such as HaCaT keratinocytes, primary mouse astrocytes and COS-7(More)
Small molecule inhibitors of protein kinases are widely used in signal transduction research and are emerging as a major class of drugs. Although interpretation of biological results obtained with these reagents critically depends on their selectivity, efficient methods for proteome-wide assessment of kinase inhibitor selectivity have not yet been reported.(More)
We have identified a rapid protein phosphorylation event at residue serine 16 of stathmin using two-dimensional gel electrophoresis coupled to matrix-assisted laser desorption/ionization mass spectrometry in combination with post-source decay analysis, which is induced by the epidermal growth factor receptor. Phosphorylation is specifically mediated by the(More)
Protein kinases are pivotal regulators of cell signaling that modulate each other's functions and activities through site-specific phosphorylation events. These key regulatory modifications have not been studied comprehensively, because low cellular abundance of kinases has resulted in their underrepresentation in previous phosphoproteome studies. Here, we(More)
Growth factor-derived mitogenic signals from the cell surface are transmitted to the nucleus via receptor tyrosine kinases (RTKs), the adaptor proteins Shc and Grb2, and a Ras-dependent protein kinase cascade that activates the extracellular signal regulated kinase (ERK) subfamily of mitogen-activated protein kinases. ERKs also are activated by hormones(More)
Recently, we have demonstrated that in PC12 cells activation of the Ras/extracellular signal-regulated kinase pathway in response to membrane depolarization or bradykinin is mediated by calcium-dependent transactivation of the epidermal growth factor receptor (EGFR). Here we address the question whether Ca(2+)-calmodulin-dependent protein kinase (CaM(More)
Aberrant signaling causes many diseases, and manipulating signaling pathways with kinase inhibitors has emerged as a promising area of drug research. Most kinase inhibitors target the conserved ATP-binding pocket; therefore specificity is a major concern. Proteomics has previously been used to identify the direct targets of kinase inhibitors upon affinity(More)
Recent findings shed new light on the process of receptor tyrosine kinase (RTK) activation and signal definition. In extension to the established mechanism of ligand-induced homodimeric receptor complex formation, recent findings highlight heterodimeric receptor aggregation as a powerful means of signal diversification. Promiscuous receptor interactions(More)