Learn More
Transduction of a mitogenic signal from the cell membrane to the nucleus involves the adapter proteins SHC and Grb2, which mediate activation of the Ras/mitogen-activated protein (MAP) kinase pathway. In contrast to receptor tyrosine kinases (RTKs), the signalling steps leading to Ras/MAP kinase activation by G-protein-coupled receptors (GPCRs) are still(More)
Cross-communication between different signalling systems allows the integration of the great diversity of stimuli that a cell receives under varying physiological situations. The transactivation of epidermal growth factor receptor (EGFR)-dependent signalling pathways upon stimulation of G-protein-coupled receptors (GPCRs), which are critical for the(More)
The epidermal growth factor receptor (EGFR) tyrosine kinase recently was identified as providing a link to mitogen-activated protein kinase (MAPK) in response to G protein-coupled receptor (GPCR) agonists in Rat-1 fibroblasts. This cross-talk pathway is also established in other cell types such as HaCaT keratinocytes, primary mouse astrocytes and COS-7(More)
Protein kinases are pivotal regulators of cell signaling that modulate each other's functions and activities through site-specific phosphorylation events. These key regulatory modifications have not been studied comprehensively, because low cellular abundance of kinases has resulted in their underrepresentation in previous phosphoproteome studies. Here, we(More)
Small molecule inhibitors of protein kinases are widely used in signal transduction research and are emerging as a major class of drugs. Although interpretation of biological results obtained with these reagents critically depends on their selectivity, efficient methods for proteome-wide assessment of kinase inhibitor selectivity have not yet been reported.(More)
Members of the human protein kinase superfamily are the major regulatory enzymes involved in the activity control of eukaryotic signal transduction pathways. As protein kinases reside at the nodes of phosphorylation-based signal transmission, comprehensive analysis of their cellular expression and site-specific phosphorylation can provide important insights(More)
We have identified a rapid protein phosphorylation event at residue serine 16 of stathmin using two-dimensional gel electrophoresis coupled to matrix-assisted laser desorption/ionization mass spectrometry in combination with post-source decay analysis, which is induced by the epidermal growth factor receptor. Phosphorylation is specifically mediated by the(More)
Phosphorylation of hepatitis B virus (HBV) core protein has recently been shown to be a prerequisite for pregenomic RNA encapsidation into viral capsids, but the host cell kinases mediating this essential step of the HBV replication cycle have not been identified. We detected two kinases of 95 and 115 kDa in HuH-7 total cell lysates which interacted(More)
Aberrant signaling causes many diseases, and manipulating signaling pathways with kinase inhibitors has emerged as a promising area of drug research. Most kinase inhibitors target the conserved ATP-binding pocket; therefore specificity is a major concern. Proteomics has previously been used to identify the direct targets of kinase inhibitors upon affinity(More)
Some protein kinases are known to acquire resistance to selective small molecule inhibitors upon mutation of a conserved threonine at the ATP binding site to a larger residue. Here, we performed a comprehensive mutational analysis of this structural element and determined the cellular sensitivities of several disease-relevant tyrosine kinases against(More)