#### Filter Results:

#### Publication Year

2003

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

⋆ Abstract. Motivated by considerations in XML theory and model checking, data strings have been introduced as an extension of finite alphabet strings which carry, at each position, a symbol and a data value from an infinite domain. Previous work has shown that it is not easy to come up with an expressive yet decidable automata model for data languages.… (More)

We suggest the first strongly subexponential and purely combinatorial algorithm for solving the mean payoff games problem. It is based on iteratively improving the longest shortest distances to a sink in a possibly cyclic directed graph. We identify a new " controlled " version of the shortest paths problem. By selecting exactly one outgoing edge in each of… (More)

The complexity of containment and satisfiability of conjunc-tive queries over finite, unranked, labeled trees is studied with respect to the axes Child , NextSibling, their transitive and reflexive closures, and Following. For the containment problem a trichotomy is presented, classifying the problems as in PTIME, coNP-complete, or Π P 2-complete. For the… (More)

We study the containment, satisfiability, and validity problems for conjunctive queries over trees with respect to a schema. We show that conjunctive query containment and validity are 2EXPTIME-complete w.r.t. a schema (DTD or Relax NG). Furthermore, we show that satisfiability for conjunctive queries w.r.t. a schema can be decided in NP. The problem is… (More)

We give a simple, direct, and constructive proof of memoryless determinacy for parity and mean payoo games. First, we prove by induction that the ÿnite duration versions of these games, played until some vertex is repeated, are determined and both players have memoryless winning strategies. In contrast to the proof of Ehrenfeucht and Mycielski, Internat.… (More)

We suggest a new randomized algorithm for solving parity games with worst case time complexity roughly min O n 3 · n k + 1 k , 2 O(√ n log n) , where n is the number of vertices and k the number of colors of the game. This is comparable with the previously known algorithms when the number of colors is small. However, the subexponential bound is an advantage… (More)

The complexity of solving infinite games, including parity, mean payoff, and simple stochastic, is an important open problem in verification, automata, and complexity theory. In this paper, we develop an abstract setting for studying and solving such games, based on function optimization over certain discrete structures. We introduce new classes of… (More)

In this paper, we develop a theory that studies words with nested data values with the help of shuffle expressions. We study two cases, which we call " ordered " and " unordered ". In the unordered case, we show that emptiness (of the two related problems) is decidable. In the ordered case, we prove undecid-ability. As a proof vehicle for the latter, we… (More)

We present several new algorithms as well as new lower and upper bounds for optimizing functions underlying infinite games pertinent to computer-aided verification.

Incremental view maintenance for XPath queries asks to maintain a materialized XPath view over an XML database. It assumes an underlying XML database <i>D</i> and a query <i>Q</i>. One is given a sequence of updates <i>U</i> to <i>D</i>, and the problem is to compute the result of <i>Q</i>(<i>U</i>(<i>D</i>)): the result of evaluating query <i>Q</i> on… (More)