#### Filter Results:

- Full text PDF available (35)

#### Publication Year

2001

2017

- This year (1)
- Last 5 years (18)
- Last 10 years (33)

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

- Henrik Björklund, Sven Sandberg, Sergei G. Vorobyov
- MFCS
- 2004

We suggest the first strongly subexponential and purely combinatorial algorithm for solving the mean payoff games problem. It is based on iteratively improving the longest shortest distances to a sink in a possibly cyclic directed graph. We identify a new " controlled " version of the shortest paths problem. By selecting exactly one outgoing edge in each of… (More)

- Henrik Björklund, Thomas Schwentick
- FCT
- 2007

⋆ Abstract. Motivated by considerations in XML theory and model checking, data strings have been introduced as an extension of finite alphabet strings which carry, at each position, a symbol and a data value from an infinite domain. Previous work has shown that it is not easy to come up with an expressive yet decidable automata model for data languages.… (More)

- Henrik Björklund, Wim Martens, Thomas Schwentick
- MFCS
- 2008

We study the containment, satisfiability, and validity problems for conjunctive queries over trees with respect to a schema. We show that conjunctive query containment and validity are 2EXPTIME-complete w.r.t. a schema (DTD or Relax NG). Furthermore, we show that satisfiability for conjunctive queries w.r.t. a schema can be decided in NP. The problem is… (More)

- Henrik Björklund, Sven Sandberg, Sergei G. Vorobyov
- STACS
- 2003

We suggest a new randomized algorithm for solving parity games with worst case time complexity roughly min O n 3 · n k + 1 k , 2 O(√ n log n) , where n is the number of vertices and k the number of colors of the game. This is comparable with the previously known algorithms when the number of colors is small. However, the subexponential bound is an advantage… (More)

- Henrik Björklund, Sven Sandberg, Sergei G. Vorobyov
- Theor. Comput. Sci.
- 2004

We give a simple, direct, and constructive proof of memoryless determinacy for parity and mean payoo games. First, we prove by induction that the ÿnite duration versions of these games, played until some vertex is repeated, are determined and both players have memoryless winning strategies. In contrast to the proof of Ehrenfeucht and Mycielski, Internat.… (More)

- Henrik Björklund, Sergei G. Vorobyov
- Theor. Comput. Sci.
- 2005

The complexity of solving infinite games, including parity, mean payoff, and simple stochastic, is an important open problem in verification, automata, and complexity theory. In this paper, we develop an abstract setting for studying and solving such games, based on function optimization over certain discrete structures. We introduce new classes of… (More)

We investigate and classify fixed parameter complexity of several infinite duration games, including Ra-bin, Streett, Muller, parity, mean payoff, and simple stochastic, using different natural parameterizations. Most known fixed parameter intractable games are PSPACE-or EXP-complete classically, AW [ * ] or XP-hard parametrically, and are all finite… (More)

- Henrik Björklund, Frank Drewes, Petter Ericson
- LATA
- 2016

- Henrik Björklund, Wim Martens, Thomas Schwentick
- J. Comput. Syst. Sci.
- 2007

The complexity of containment and satisfiability of conjunc-tive queries over finite, unranked, labeled trees is studied with respect to the axes Child , NextSibling, their transitive and reflexive closures, and Following. For the containment problem a trichotomy is presented, classifying the problems as in PTIME, coNP-complete, or Π P 2-complete. For the… (More)

- Henrik Björklund, Wim Martens
- J. Comput. Syst. Sci.
- 2008

We prove that minimizing finite automata is NP-hard for almost all classes of automata that extend the class of deterministic finite automata. More specifically, we show that minimization is NP-hard for all finite automata classes that subsume the class of δNFAs which accept strings of length at most three. Here, δNFAs are the finite automata that are… (More)