Henrietta Papp

Learn More
We have studied the expressions of various protein kinase C (PKC) isoenzymes in T cells and monocytes from patients with systemic lupus erythematosus (SLE), in comparison to those of healthy controls and patients with other immunological disorders. As measured by Western blotting, the levels of PKCbeta, delta, eta, epsilon, theta and zeta (but not of(More)
The neurotoxic effects of amyloid-beta(1-42) and amyloid-beta(25-35) (A beta) on cholinergic and acetylcholinesterase-positive neurons were investigated in primary cultures derived from embryonic 18-day-old rat basal forebrain. After various time intervals, the cultures were treated with 1, 5, 10 or 20 microM A beta for different time periods. The(More)
Alteration in the processing of the amyloid precursor protein (APP) is a central event in the formation of amyloid deposits in the brains of individuals with Alzheimer's disease (AD). It has been suggested that acetylcholinesterase (AChE) inhibitors, which promote the cholinergic function and consequently improve the cognitive deficits, may also exert a(More)
The amyloid precursor protein (APP) and presenilin-1 (PS-1) are not only of importance for the normal functioning of the various neurons, but also play central roles in the pathogenesis of Alzheimer's disease (AD). Through the use of immunohistochemical and Western blot techniques, the bidirectional axonal transport of these proteins has been demonstrated(More)
The axonal transport of presenilin-1 was investigated in a spinal cord-sciatic nerve-neuromuscular junction model system in the rat. The technique of unilateral sciatic nerve ligation, using double ligatures, was combined with immunohistochemical staining and Western blotting to examine the axonal transport of the protein. Immunohistochemical studies(More)
In the symptomatic treatment of mild to moderately severe dementia associated with Alzheimer's disease, donepezil (E2020) has been introduced for the inhibition of acetylcholinesterase activity in the human brain. However, there is no morphological evidence as to how this chemical agent affects the acetylcholinesterase-positive structures in the various(More)
Human amyloid-beta1-42 has been suggested to be a pathogenetic factor in Alzheimer's disease. The precise mechanism by which this peptide causes the degeneration of neurons in the affected brain is not yet fully understood. By using immunohistochemistry we explored the inhibitory effects of human amyloid-beta1-42 applied in vivo on the fast axonal transport(More)
Previous experimental studies have indicated that amyloid-b peptide (Aβ) may cause axonal degeneration in the brain of individuals with Alzheimer's disease (AD) by physical injury, mass lesion, or membrane perturbation. In this study, acetylcholinesterase histochemical, and Aβ and tau immunohistochemical double-staining were performed in nondemented elderly(More)
beta-Amyloid peptide (A beta), the principal component of senile plaques in Alzheimer's disease, has been found to be neurotoxic. The role of A beta in the deficits of the GABAergic system in patients with Alzheimer's disease is unclear. It has been suggested that the cytotoxic activity of A beta is localized to amino acid residues 25-35 of this peptide,(More)
Calpains, the Ca(2+)-dependent thiol proteases, are abundant in the nervous tissue. The ubiquitous enzyme forms in mammals are heterodimers consisting of a specific, micro or m, large (catalytic) subunit and, apparently, a common small (regulatory) subunit (CSS1). Recently, however, we described a second form of small subunit (CSS2), which is of restricted(More)