Henri Tiedge

Learn More
In nerve cells, a select group of RNAs has been localized to dendritic domains. Here we have examined dendritic RNA transport in sympathetic neurons in primary culture, using a microinjection protocol with neuronal BC1 RNA and with BC1-derived sequence segments. After cytoplasmic microinjection, full-length BC1 RNA was selectively transported to dendrites;(More)
Primate BC200 RNA is a 200-nucleotide-long, nontranslatable RNA that is prevalently expressed in the nervous system. We have determined the primary structure of human BC200 RNA, using cDNA cloning and PCR techniques. BC200 RNA can be subdivided into three structural domains. The 5' region is homologous to Alu repetitive elements that are found in high copy(More)
In nerve cells, a specialized protein synthetic machinery is thought to operate in local compartments of dendrites, in particular beneath synaptic junctions, and thereby to facilitate swift adjustments of the postsynaptic protein repertoire in situ. This notion has been supported by the identification of polyribosomes and selected mRNAs in those(More)
In neurons, several mRNAs are selectively delivered to dendritic domains where they are presumably translated by local protein synthetic machinery. Although electron microscopy has identified polyribosomes in dendrites, in particular in postsynaptic dendritic compartments, the functional composition of the local protein synthetic apparatus and the scope of(More)
Small untranslated BC1 and BC200 RNAs are translational regulators that are selectively targeted to somatodendritic domains of neurons. They are thought to operate as modulators of local protein synthesis in postsynaptic dendritic microdomains, in a capacity in which they would contribute to the maintenance of long-term synaptic plasticity. Because(More)
In eukaryotes, the entwined pathways of RNA transport and local translational regulation are key determinants in the spatio-temporal articulation of gene expression. One of the main advantages of this mechanism over transcriptional control in the nucleus lies in the fact that it endows local sites with independent decision-making authority, a consideration(More)
Regulatory RNAs have been suggested to contribute to the control of gene expression in eukaryotes. Brain cytoplasmic (BC) RNAs are regulatory RNAs that control translation initiation. We now report that neuronal BC1 RNA plays an instrumental role in the protein-synthesis-dependent implementation of neuronal excitation-repression equilibria. BC1 repression(More)
Translational control at the synapse is thought to be a key determinant of neuronal plasticity. How is such control implemented? We report that small untranslated BC1 RNA is a specific effector of translational control both in vitro and in vivo. BC1 RNA, expressed in neurons and germ cells, inhibits a rate-limiting step in the assembly of translation(More)
Cultures of primary neurons or thin brain slices are typically prepared from immature animals. We introduce a method to prepare hippocampal slice cultures from mature rats aged 20-30 days. Mature slice cultures retain hippocampal cytoarchitecture and synaptic connections up to 3 months in vitro. Spontaneous epileptiform activity is rarely observed(More)
Protein kinase Mzeta (PKMzeta) is an atypical protein kinase C isoform that has been implicated in the protein synthesis-dependent maintenance of long term potentiation and memory storage in the brain. Synapse-associated kinases are uniquely positioned to promote enduring consolidation of structural and functional modifications at the synapse, provided that(More)