Henri Roger Lijnen

Learn More
Plasminogen activator inhibitor-1 (PAI-1), a 45-kDa serine proteinase inhibitor with reactive site peptide bond Arg345-Met346, is the main physiological plasminogen activator inhibitor. It occurs in human plasma at an antigen concentration of about 20 ng mL(-1). Besides the active inhibitory form of PAI-1 that spontaneously converts to a latent form, also a(More)
Vascular remodeling, defined as lasting structural changes in the vessel wall in response to hemodynamic stimuli, plays a role in many (patho)physiological processes requiring cell migration and degradation of extracellular matrix (ECM). Two proteolytic systems, the fibrinolytic (plasminogen/plasmin) and matrix metalloproteinase (MMP) systems can degrade(More)
Tissue-type plasminogen activator (t-PA) is approved for treatment of ischemic stroke patients, but it increases the risk of intracranial bleeding (ICB). Previously, we have shown in a mouse stroke model that stromelysin-1 (matrix metalloproteinase-3 [MMP-3]) induced in endothelial cells was critical for ICB induced by t-PA. In the present study, using(More)
The kinetics of the activation of Glu-plasminogen and Lys-plasminogen (P) by a two-chain form of human tissue plasminogen activator (A) were studied in purified systems, and in the presence of fibrinogen (f) and of fibrin films (F) of increasing size and surface density. The activation in the purified systems followed Michaelis-Menten kinetics with a(More)
Development of vasculature and mRNA expression of 17 pro- or antiangiogenic factors were studied during adipose tissue development in nutritionally induced or genetically determined murine obesity models. Subcutaneous (SC) and gonadal (GON) fat pads were harvested from male C57Bl/6 mice kept on standard chow [standard fat diet (SFD)] or on high-fat diet for(More)
BACKGROUND Development of adipose tissue is a complex process involving adipogenesis, angiogenesis and proteolytic remodeling of the extracellular matrix. The matrix metalloproteinase (MMP) system plays an important role in these processes. OBJECTIVE To establish a functional role of gelatinase A (MMP-2) in the development of adipose tissue. METHODS(More)
Development of obesity is associated with substantial modulation of adipose tissue structure, involving adipogenesis, angiogenesis, and extracellular matrix remodelling. These processes require proteolytic activity, provided mainly by the fibrinolytic (plasminogen/plasmin), matrix metalloproteinase, and ADAM/ADAMTS systems. In early-stage development of(More)
The potential role of the matrix metalloproteinase (MMP) system in the pathophysiology of the adipose tissue was investigated in a mouse model of nutritionally induced obesity. mRNA levels of 16 MMPs and 4 tissue inhibitors of MMPs (TIMPs) were measured by semiquantitative RT-PCR in adipose tissue isolated from mice maintained for 15 weeks on a standard or(More)