Henri J. Lezec

Learn More
Transmission enhancements of order 1000 have been reported for subwavelength hole arrays in metal films and attributed to surface plasmon (SP) resonance. We show that the properly normalized enhancement factor is consistently less than 7, and that similar enhancements occur in nonmetallic systems that do not support SPs. We present a new model in which the(More)
We present a fully three-dimensional theoretical study of the extraordinary transmission of light through subwavelength hole arrays in optically thick metal films. Good agreement is obtained with experimental data. An analytical minimal model is also developed, which conclusively shows that the enhancement of transmission is due to tunneling through surface(More)
Light usually diffracts in all directions when it emerges from a subwavelength aperture, which puts a lower limit on the size of features that can be used in photonics. This limitation can be overcome by creating a periodic texture on the exit side of a single aperture in a metal film. The transmitted light emerges from the aperture as a beam with a small(More)
In this Letter, we explore transmission properties of a single subwavelength slit flanked by a finite array of grooves made on a thick metallic film. We identify three main mechanisms that can enhance optical transmission: groove cavity mode excitation (controlled by the depth of the grooves), in-phase groove reemission (controlled by the period of the(More)
We present a theoretical foundation for the beaming of light displayed by a single subwavelength aperture in an appropriately corrugated metal film [H. J. Lezec, Science 297, 820 (2002)]]. Good agreement is found between calculations and experimental data. We show that beaming is due to the formation of electromagnetic surface resonances and that the beam(More)
Nanofabricated photonic materials offer opportunities for crafting the propagation and dispersion of light in matter. We demonstrate an experimental realization of a two-dimensional negative-index material in the blue-green region of the visible spectrum, substantiated by direct geometric visualization of negative refraction. Negative indices were achieved(More)
Electron beams with helical wavefronts carrying orbital angular momentum are expected to provide new capabilities for electron microscopy and other applications. We used nanofabricated diffraction holograms in an electron microscope to produce multiple electron vortex beams with well-defined topological charge. Beams carrying quantized amounts of orbital(More)
We investigate the influence of array order in the optical transmission properties of subwavelength hole arrays, by comparing the experimental spectral transmittance of periodic and quasiperiodic hole arrays as a function of frequency. We find that periodicity and long-range order are not necessary requirements for obtaining enhanced and suppressed optical(More)
We demonstrate control of the surface plasmon polariton wavevector in an active metal-dielectric plasmonic interferometer by utilizing electrooptic barium titanate as the dielectric layer. Arrays of subwavelength interferometers were fabricated from pairs of parallel slits milled in silver on barium titanate thin films. Plasmon-mediated transmission of(More)
Photonics is a promising candidate technology for information processing, communication and data storage. Essential building blocks, such as logic elements and modulators, have been demonstrated. However, because of weak nonlinear light –matter interactions, these components typically require high power densities and large interaction volumes, limiting(More)