Henri J Huttunen

Learn More
Amyloid beta-peptide (Abeta) accumulation in specific brain regions is a pathological hallmark of Alzheimer's disease (AD). We have previously reported that a well-characterized acyl-coenzyme A: cholesterol acyltransferase (ACAT) inhibitor, CP-113,818, inhibits Abeta production in cell-based experiments. Here, we assessed the efficacy of CP-113,818 in(More)
Activation of glial cells has been proposed to contribute to neuronal dysfunction and neuronal cell death in Alzheimer's disease. In this study, we attempt to determine some of the effects of secreted factors from activated murine N-11 microglia on viability and morphology of neurons using the differentiated neuroblastoma cell line Neuro2a. Microglia were(More)
A growing amount of evidence indicates that neuronal trauma can induce a recapitulation of developmental-like mechanisms for neuronal survival and regeneration. Concurrently, ontogenic dependency of central neurons for brain-derived neurotrophic factor (BDNF) is lost during maturation but is re-acquired after injury. Here we show in organotypic hippocampal(More)
In this study we show that embryonic neurite growth-promoting protein amphoterin binds to carboxylated N -glycans previously identified on mammalian endothelial cells. Since amphoterin is a ligand for the receptor for advanced glycation end products (RAGE), and the ligand-binding V-domain of the receptor contains two potential N -glycosylation sites, we(More)
Amyloid beta-peptide (Abeta) has a central role in the pathogenesis of Alzheimer's disease (AD). Cellular cholesterol homeostasis regulates endoproteolytic generation of Abeta from the amyloid precursor protein (APP). Previous studies have identified acyl-coenzyme A: cholesterol acyltransferase (ACAT), an enzyme that regulates subcellular cholesterol(More)
Amphoterin, a major form of HMG (high mobility group) 1 proteins, is highly expressed in immature and malignant cells. A role in cell motility is suggested by the ability of amphoterin to promote neurite extension through RAGE (receptor of advanced glycation end products), an immunoglobulin superfamily member that communicates with the GTPases Cdc42 and(More)
Cerebral accumulation of amyloid-beta (Abeta) is characteristic of Alzheimer disease and of amyloid precursor protein (APP) transgenic mice. Here, we assessed the efficacy of CI-1011, an inhibitor of acyl-coenzyme A:cholesterol acyltransferase, which is suitable for clinical use, in reducing amyloid pathology in both young (6.5 months old) and aged (16(More)
Amphoterin has been suggested to regulate invasive process extension and cell migration in tumor cells and embryonic neurons through binding to receptor for advanced glycation end products (RAGE), a multiligand transmembrane receptor belonging to the immunoglobulin superfamily. In this study, we identify a COOH-terminal motif in amphoterin (amino acids(More)
Alzheimer disease-associated beta-amyloid peptide is generated from its precursor protein APP. By using the yeast two-hybrid assay, here we identified HtrA2/Omi, a stress-responsive chaperone-protease as a protein binding to the N-terminal cysteinerich region of APP. HtrA2 coimmunoprecipitates exclusively with immature APP from cell lysates as well as mouse(More)
A common pathogenic event that occurs in all forms of Alzheimer's disease is the progressive accumulation of amyloid beta-peptide (Abeta) in brain regions responsible for higher cognitive functions. Inhibition of acyl-coenzyme A: cholesterol acyltransferase (ACAT), which generates intracellular cholesteryl esters from free cholesterol and fatty acids,(More)