Heni Ben Amor

Learn More
Multi-fingered robot grasping is a challenging problem that is difficult to tackle using hand-coded programs. In this paper we present an imitation learning approach for learning and generalizing grasping skills based on human demonstrations. To this end, we split the task of synthesizing a grasping motion into three parts: (1) learning efficient grasp(More)
Intention inference can be an essential step toward efficient humanrobot interaction. For this purpose, we propose the Intention-Driven Dynamics Model (IDDM) to probabilistically model the generative process of movements that are directed by the intention. The IDDM allows to infer the intention from observed movements using Bayes’ theorem. The IDDM(More)
This paper presents a comparison of various classification methods for the problem of recognizing grasp types involved in object manipulations performed with a data glove. Conventional wisdom holds that data gloves need calibration in order to obtain accurate results. However, calibration is a time-consuming process, inherently user-specific, and its(More)
Exploration vs. exploitation is a well known issue in Evolutionary Algorithms. Accordingly, an unbalanced search can lead to premature convergence. GASOM, a novel Genetic Algorithm, addresses this problem by intelligent exploration techniques. The approach uses Self-Organizing Maps to mine data from the evolution process. The information obtained is(More)
Close physical interaction between robots and humans is a particularly challenging aspect of robot development. For successful interaction and cooperation, the robot must have the ability to adapt its behavior to the human counterpart. Based on our earlier work, we present and evaluate a computationally efficient machine learning algorithm that is well(More)
In order for humans and robots to engage in direct physical interaction several requirements have to be met. Among others, robots need to be able to adapt their behavior in order to facilitate the interaction with a human partner. This can be achieved using machine learning techniques. However, most machine learning scenarios to-date do not address the(More)
C lose physical interaction between robots and humans is a particularly challenging aspect of robot development. For successful interaction and cooperation, the robot must have the ability to adapt its behavior to the human counterpart. Based on our earlier work, we present and evaluate a computationally efficient machine learning algorithm that is well(More)
To engage in cooperative activities with human partners, robots have to possess basic interactive abilities and skills. However, programming such interactive skills is a challenging task, as each interaction partner can have different timing or an alternative way of executing movements. In this paper, we propose to learn interaction skills by observing how(More)
Programming of complex motor skills for humanoid robots can be a time intensive task, particularly within conventional textual or GUI-driven programming paradigms. Addressing this drawback, we propose a new programming-by-demonstration method called Kinesthetic Bootstrapping for teaching motor skills to humanoid robots by means of intuitive physical(More)
Robots that interact with humans must learn to not only adapt to different human partners but also to new interactions. Such a form of learning can be achieved by demonstrations and imitation. A recently introduced method to learn interactions from demonstrations is the framework of Interaction Primitives. While this framework is limited to represent and(More)