Hengyou Weng

Learn More
MicroRNAs are subject to precise regulation and have key roles in tumorigenesis. In contrast to the oncogenic role of miR-22 reported in myelodysplastic syndrome (MDS) and breast cancer, here we show that miR-22 is an essential anti-tumour gatekeeper in de novo acute myeloid leukaemia (AML) where it is significantly downregulated. Forced expression of(More)
N6-Methyladenosine (m6A) represents the most prevalent internal modification in mammalian mRNAs. Despite its functional importance in various fundamental bioprocesses, the studies of m6A in cancer have been limited. Here we show that FTO, as an m6A demethylase, plays a critical oncogenic role in acute myeloid leukemia (AML). FTO is highly expressed in AMLs(More)
It is generally assumed that gain- and loss-of-function manipulations of a functionally important gene should lead to the opposite phenotypes. We show in this study that both overexpression and knockout of microRNA (miR)-126 surprisingly result in enhanced leukemogenesis in cooperation with the t(8;21) fusion genes AML1-ETO/RUNX1-RUNX1T1 and AML1-ETO9a (a(More)
In addition to genetic abnormalities, such as chromosomal translocations and somatic mutations that have been widely acknowledged in the leukemogenesis of acute myeloid leukemia (AML), epigenetic modifications also play a vital role in this process. MicroRNA (miRNA) regulation is emerging as a new layer of epigenetic regulation besides DNA methylation and(More)
Overexpression of HOXA/MEIS1/PBX3 homeobox genes is the hallmark of mixed lineage leukemia (MLL)-rearranged acute myeloid leukemia (AML). HOXA9 and MEIS1 are considered to be the most critical targets of MLL fusions and their coexpression rapidly induces AML. MEIS1 and PBX3 are not individually able to transform cells and were therefore hypothesized to(More)
  • Hengyou Weng, Huilin Huang, +26 authors Jianjun Chen
  • Cell stem cell
  • 2017
N6-methyladenosine (m6A), the most prevalent internal modification in eukaryotic messenger RNAs (mRNAs), plays critical roles in many bioprocesses. However, its functions in normal and malignant hematopoiesis remain elusive. Here, we report that METTL14, a key component of the m6A methyltransferase complex, is highly expressed in normal hematopoietic(More)
  • Rui Su, Lei Dong, +29 authors Jianjun Chen
  • Cell
  • 2017
R-2-hydroxyglutarate (R-2HG), produced at high levels by mutant isocitrate dehydrogenase 1/2 (IDH1/2) enzymes, was reported as an oncometabolite. We show here that R-2HG also exerts a broad anti-leukemic activity in vitro and in vivo by inhibiting leukemia cell proliferation/viability and by promoting cell-cycle arrest and apoptosis. Mechanistically, R-2HG(More)
Expression of functionally important genes is often tightly regulated at both transcriptional and post-transcriptional levels. We reported previously that TET1, the founding member of the TET methylcytosine dioxygenase family, plays an essential oncogenic role in MLL-rearranged acute myeloid leukemia (AML), where it is overexpressed owing to(More)
The onset of cancer is a complex process that is driven by the accumulation of multiple genetic mutations. However, the fact that inhibition of a single oncogene can impair the proliferation and survival of cancer cells due to their "oncogene addiction" provides implications for the so-called "molecular targeted therapy" in cancer treatment. The oncogenic(More)
Inducing degradation of oncoproteins by small molecule compounds has the potential to avoid drug resistance and therefore deserves to be exploited for new therapies. Oridonin is a natural compound with promising antitumor efficacy that can trigger the degradation of oncoproteins; however, the direct cellular targets and underlying mechanisms remain unclear.(More)