Hengtao Zhang

Learn More
The role of I(K) (delayed rectifier current) and I(f) (hyperpolarization-activated current) in dominant and subsidiary pacemaker ranges was studied in single myocytes isolated from the guinea pig sino-atrial node by means of a perforated patch-clamp technique. In the dominant pacemaker range (approx. -55 to -40 mV), I(K) tails are present whereas I(f) is(More)
We investigated whether in the sinoatrial node (SAN) there are two different pacemaker mechanisms and whether either one can maintain spontaneous discharge. These questions were studied by means of an electrophysiological technique and of blockers of different diastolic currents in rabbit and guinea pig isolated SAN. In SAN subsidiary pacemakers of both(More)
TREK channels belong to the superfamily of two-pore-domain K(+) channels and are activated by membrane stretch, arachidonic acid, volatile anaesthetics and heat. TREK-1 is highly expressed in the atrium of the adult heart. In this study, we investigated the role of TREK-1 and TREK-2 channels in regulating the resting membrane potential (RMP) of isolated(More)
RATIONALE A major goal for the treatment of heart tissue damaged by cardiac injury is to develop strategies for restoring healthy heart muscle through the regeneration and repair of damaged myocardium. We recently demonstrated that administration of a specific combination of microRNAs (miR combo) into the infarcted myocardium leads to direct in vivo(More)
In this study, we report the identification and amino acid sequence of a novel two-pore domain potassium channel (TASK-1) in chicken. This protein, cTASK-1, is highly similar to mouse and human TASK-1 particularly within the pore regions. We describe the expression profile of both chicken and mouse TASK-1 in the embryonic heart as the ventricular conduction(More)
It has been proposed that cholinergic agonists inhibit the sinoatrial node discharge by shifting the activation range of the hyperpolarization-activated inward current If to more negative values or by increasing potassium conductance. In the former instance, cesium will potentiate the cholinergic inhibition by blocking any residual If; in the latter(More)
Among the mechanisms proposed for the increase in discharge of sino-atrial node (SAN) by norepinephrine (NE) are an increase in the hyperpolarization-activated current I(f) and in the slow inward current I(Ca,L). If I(f) is the primary mechanism, cesium (a blocker of I(f)) should eliminate the positive chronotropic effect of NE. If I(Ca,L), is involved,(More)
Recent studies have shown that the pyruvate-isocitrate cycling pathway, involving the mitochondrial citrate/isocitrate carrier and the cytosolic NADP-dependent isocitrate dehydrogenase (ICDc), is involved in control of glucose-stimulated insulin secretion (GSIS). Here we demonstrate that pyruvate-isocitrate cycling regulates expression of the voltage-gated(More)
Cardiac pacemaking is governed by specialized cardiomyocytes located in the sinoatrial node (SAN). SAN cells (SANCs) integrate voltage-gated currents from channels on the membrane surface (membrane clock) with rhythmic Ca(2+) release from internal Ca(2+) stores (Ca(2+) clock) to adjust heart rate to meet hemodynamic demand. Here, we report that stromal(More)
Background K+ channels are the principal determinants of the resting membrane potential (RMP) in cardiac myocytes and thus, influence the magnitude and time course of the action potential (AP). RT-PCR and in situ hybridization are used to study the distribution of TASK-1 and whole-cell patch clamp technique is employed to determine the functional expression(More)