Learn More
The emergence of Location-based Social Network (LBSN) services provides a wonderful opportunity to build personalized Point-of-Interest (POI) recommender systems. Although a personalized POI recommender system can significantly facilitate users' outdoor activities, it faces many challenging problems, such as the hardness to model user's POI decision making(More)
The study of the use of mobile Apps plays an important role in understanding the user preferences, and thus provides the opportunities for intelligent personalized context-based services. A key step for the mobile App usage analysis is to classify Apps into some predefined categories. However, it is a nontrivial task to effectively classify mobile Apps due(More)
The GPS technology and new forms of urban geography have changed the paradigm for mobile services. As such, the abundant availability of GPS traces has enabled new ways of doing taxi business. Indeed, recent efforts have been made on developing mobile recommender systems for taxi drivers using Taxi GPS traces. These systems can recommend a sequence of(More)
The problem of expert finding targets on identifying experts with special skills or knowledge for some particular knowledge categories, i.e. knowledge domains, by ranking user authority. In recent years, this problem has become increasingly important with the popularity of knowledge sharing social networks. While many previous studies have examined(More)
With the explosive development of social networks, there are excessive amount of user-generated contents available on social media platforms. Indeed, in social networks, it is now a big challenge to promote the right information to the right audiences at the right time. To this end, in this paper, we propose an integrated study of the mention mechanism in(More)
How to improve authority ranking is a crucial research problem for expert finding. In this paper, we propose a novel framework for expert finding based on the authority information in the target category as well as the relevant categories. First, we develop a scalable method for measuring the relevancy between categories through topic models. Then, we(More)
A key step for the mobile app usage analysis is to classify apps into some predefined categories. However, it is a nontrivial task to effectively classify mobile apps due to the limited contextual information available for the analysis. To this end, in this paper, we propose an approach to first enrich the contextual information of mobile apps by exploiting(More)
Ranking fraud in the mobile App market refers to fraudulent or deceptive activities which have a purpose of bumping up the Apps in the popularity list. Indeed, it becomes more and more frequent for App developers to use shady means, such as inflating their Apps' sales or posting phony App ratings, to commit ranking fraud. While the importance of preventing(More)
With the rapid prevalence of smart mobile devices, the number of mobile Apps available has exploded over the past few years. To facilitate the choice of mobile Apps, existing mobile App recommender systems typically recommend popular mobile Apps to mobile users. However, mobile Apps are highly varied and often poorly understood, particularly for their(More)