Learn More
Multicompartment micelles are desirable for advanced applications such as drug delivery. Recently, core-shell-corona (CSC) and segmented-worm (SW) micelles formed by ABC triblock terpolymers with three mutually immiscible blocks are observed in experiments. We have performed dissipative particle dynamics simulations to study the effects of molecular(More)
The growth of a surface fungal colony in the three-dimensional space was modeled kinetically. The present analysis led to the conclusion that the radius of a fungal colony increases exponentially in the initial period followed by a constant increase in its radius at large times. This is justified by analyzing the available experimental data. The elevation(More)
The aggregative behavior of the polymeric surfactants with various molecular architectures in dilute solutions is studied by dissipative particle dynamics. The effects of the solvophobic/solvophilic length, polymeric architecture (linear, star, dendritic, and cyclic type), chain rigidity, and solvophobic additives on the critical micelle concentration (CMC)(More)
Restrained molecular dynamics simulations were performed to study the interaction forces of a protein with the self-assembled monolayers (SAMs) of S(CH2)4(EG)4OH, S(CH2)11OH, and S(CH2)11CH3 in the presence of water molecules. The force-distance curves were calculated by fixing the center of mass of the protein at several separation distances from the SAM(More)
The prevention of nonspecific protein adsorption to synthetic materials and devices presents a major design challenge in the biomedical community. While some chemical groups can resist nonspecific protein adsorption from simple solutions for limited contact times, there remains a need for new nonfouling functional groups and surface coatings that prevent(More)
The size-dependent behavior of small unilamellar vesicles is explored by dissipative particle dynamics, including the membrane characteristics and mechanical properties. The spontaneously formed vesicles are in the metastable state and the vesicle size is controlled by the concentration of model lipids. As the vesicle size decreases, the bilayer gets(More)
The size separation of Brownian particles with the same free mobility in an electrophoretic microchannel with alternating thick regions and narrow constrictions is studied theoretically. The electrophoretic mobility is field dependent and generally increases with field strength. In weak fields, Brownian diffusion dominates and the migration is controlled by(More)
The interactions between surfactants and vesicles formed by double-tail amphiphiles are investigated by the dissipative particle dynamics. As the surfactant concentration is increased, vesicle solubilization can be generally described by the three-stage hypothesis including vesicular region, vesicle-micelle coexistence, and mixed micellar region. We study(More)
The dissociation of a biomolecular complex under the action of periodic and correlated random forcing is studied theoretically. The former is characterized by the period tau p and the latter by the correlation time tau r. The rupture rates are calculated by overdamped Langevin dynamics and three distinct regimes are identified for both cases by comparison(More)
The optoelectronic properties of rod-coil diblock copolymers with π-conjugation are greatly affected by molecular packing, which is closely related to their micellar morphology. Self-assembly of rod-coil block copolymer B(y)A(x) in a selective solvent for its coil block is studied by using dissipative particle dynamics, where B(y)A(x) denotes the polymer(More)