Hendrik Juenger

Learn More
The exact delineation of chronic brain lesions is a crucial step when investigating the relationship between brain structure and (dys-)function. For this, manual tracing, although very time-consuming, is still the gold standard. In order to assess the possible contributions from other methods, we compared manual tracing of lesion boundaries with a newly(More)
AIM Early unilateral brain lesions can lead to a persistence of ipsilateral corticospinal projections from the contralesional hemisphere, which can enable the contralesional hemisphere to exert motor control over the paretic hand. In contrast to the primary motor representation (M1), the primary somatosensory representation (S1) of the paretic hand always(More)
To assess motor cortex plasticity after constraint-induced movement therapy in patients with ischemic perinatal stroke, functional MRI and transcranial magnetic stimulation were applied. Seven hemiparetic patients with ischemic perinatal stroke of the middle cerebral artery and preserved crossed corticospinal projections to the paretic hand were studied(More)
This study investigates the (re-)organization of somatosensory functions following early brain lesions. Using functional magnetic resonance imaging (fMRI), passive hand movement was studied. Transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG) were used as complementary methods. fMRI data was analyzed on the first level with regard to(More)
The developing brain possesses a high potential for neuroplasticity. Yet, this remarkable potential of (re-)organization is not a general principle. It seems to vary among different functional systems. Here, we show that distinct brain structures involved in somatosensory processing are already prenatally determined so that a pre- or perinatally acquired(More)
Tetraspanin-5 (Tspan-5) mRNA was recently shown to be strongly expressed within the central nervous system. In order to address Tspan-5 function during nervous system development, we performed a detailed expression analysis in the postnatal FVB/N mouse cerebellum using in situ hybridizations. Tspan-5 mRNA was expressed within cerebellar Purkinje cells (PCs)(More)
The aim of the present study was to investigate corticospinal and intracortical excitability in patients with congenital stroke. In adults, stroke sequelae reduce corticospinal excitability, as indicated by an elevated threshold for motor evoked potentials (MEP), and increase intracortical excitability, as indicated by reduced intracortical inhibition. Ten(More)
Lesion-behaviour mapping analyses require the demarcation of the brain lesion on each (usually transverse) slice of the individual stroke patient's brain image. To date, this is generally thought to be most precise when done manually, which is, however, both time-consuming and potentially observer-dependent. Fully automated lesion demarcation methods have(More)
BACKGROUND Early unilateral brain lesions can lead to different types of corticospinal (re-)organization of motor networks. In one group of patients, the contralesional hemisphere exerts motor control not only over the contralateral non-paretic hand but also over the (ipsilateral) paretic hand, as the primary motor cortex is (re-)organized in the(More)
  • 1