Learn More
The exact delineation of chronic brain lesions is a crucial step when investigating the relationship between brain structure and (dys-)function. For this, manual tracing, although very time-consuming, is still the gold standard. In order to assess the possible contributions from other methods, we compared manual tracing of lesion boundaries with a newly(More)
This study investigates whether the type of corticospinal reorganization (identified by transcranial magnetic stimulation) influences the efficacy of constraint-induced movement therapy (CIMT). Nine patients (five males, four females; mean age 16y [SD 6y 5mo], range 11-30y) controlling their paretic hand via ipsilateral corticospinal projections from the(More)
AIM Early unilateral brain lesions can lead to a persistence of ipsilateral corticospinal projections from the contralesional hemisphere, which can enable the contralesional hemisphere to exert motor control over the paretic hand. In contrast to the primary motor representation (M1), the primary somatosensory representation (S1) of the paretic hand always(More)
To assess motor cortex plasticity after constraint-induced movement therapy in patients with ischemic perinatal stroke, functional MRI and transcranial magnetic stimulation were applied. Seven hemiparetic patients with ischemic perinatal stroke of the middle cerebral artery and preserved crossed corticospinal projections to the paretic hand were studied(More)
OBJECTIVE The aim of this study was to assess neuromodulative effects of CIMT in congenital hemiparesis. PATIENTS AND METHODS Ten patients (age range: 10-30 years) with congenital hemiparesis due to unilateral cortico-subcortical infarctions in the middle cerebral artery territory, and with preserved cortico-spinal projections from the affected hemisphere(More)
This study investigates the (re-)organization of somatosensory functions following early brain lesions. Using functional magnetic resonance imaging (fMRI), passive hand movement was studied. Transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG) were used as complementary methods. fMRI data was analyzed on the first level with regard to(More)
The developing brain possesses a high potential for neuroplasticity. Yet, this remarkable potential of (re-)organization is not a general principle. It seems to vary among different functional systems. Here, we show that distinct brain structures involved in somatosensory processing are already prenatally determined so that a pre- or perinatally acquired(More)
Functional MR imaging is dependent on the hemodynamic response function of the brain. Cerebrovascular anomalies may lead to hemodynamic artifacts, contorting the true localization of neural activation. This is illustrated in the case of a 4-year-old boy with an arteriovenous malformation (AVM) of the left central region undergoing extensive functional(More)
Tetraspanin-5 (Tspan-5) mRNA was recently shown to be strongly expressed within the central nervous system. In order to address Tspan-5 function during nervous system development, we performed a detailed expression analysis in the postnatal FVB/N mouse cerebellum using in situ hybridizations. Tspan-5 mRNA was expressed within cerebellar Purkinje cells (PCs)(More)
The aim of the present study was to investigate corticospinal and intracortical excitability in patients with congenital stroke. In adults, stroke sequelae reduce corticospinal excitability, as indicated by an elevated threshold for motor evoked potentials (MEP), and increase intracortical excitability, as indicated by reduced intracortical inhibition. Ten(More)