Hendrik Bluhm

Learn More
A detailed understanding of the sources, transformations and fates of organic species in the environment is crucial because of the central roles that they play in human health, biogeochemical cycles and the Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example,(More)
The growth of water on thin SiO2 films on Si wafers at vapor pressures between 1.5 and 4 Torr and temperatures between -10 and 21 degrees C has been studied in situ using Kelvin probe microscopy and X-ray photoemission and absorption spectroscopies. From 0 to 75% relative humidity (RH), water adsorbs forming a uniform film 4-5 layers thick. The surface(More)
Using a combination of X-ray photoemission and near-edge X-ray absorption spectroscopy (NEXAFS) as well as density-functional theory (DFT), we have investigated the adsorption of acetone on ice in the temperature range from 218 to 245 K. The adsorption enthalpy determined from experiment (45 kJ mol(-1)) agrees well with the adsorption energy predicted by(More)
Photoelectron spectroscopic measurements have the potential to provide detailed mechanistic insight by resolving chemical states, electrochemically active regions and local potentials or potential losses in operating solid oxide electrochemical cells (SOCs), such as fuel cells. However, high-vacuum requirements have limited X-ray photoelectron spectroscopy(More)
William C. Chueh, Anthony H. McDaniel, Michael E. Grass, Yong Hao, Naila Jabeen, Zhi Liu, Sossina M. Haile, Kevin F. McCarty, Hendrik Bluhm, Farid El Gabaly Sandia National Laboratories, Livermore, California 94551, United States Materials Science, California Institute of Technology, Pasadena, California 91125, United States Advanced Light Source, Lawrence(More)
Trace contaminants such as strong acids have been suggested to affect the thickness of the quasi-liquid layer at the ice/air interface, which is at the heart of heterogeneous chemical reactions between snowpacks or cirrus clouds and the surrounding air. We used X-ray photoelectron spectroscopy (XPS) and electron yield near edge X-ray absorption fine(More)
Many interesting structures have been observed for O(2)-exposed Pt(110). These structures, along with their stability and reactivity toward CO, provide insights into catalytic processes on open Pt surfaces, which have similarities to Pt nanoparticle catalysts. In this study, we present results from ambient-pressure X-ray photoelectron spectroscopy,(More)
We discuss the role of the presence of dangling H-bonds from water or from surface hydroxyl species on the wetting behavior of surfaces. Using scanning tunneling and atomic force microscopies and photoelectron spectroscopy, we have examined a variety of surfaces, including mica, oxides and pure metals. We find that in all cases, the availability of free,(More)
We use photo-electrons as a non-contact probe to measure local electrical potentials in a solid-oxide electrochemical cell. We characterize the cell in operando at near-ambient pressure using spatially-resolved X-ray photoemission spectroscopy. The overpotentials at the interfaces between the Ni and Pt electrodes and the yttria-stabilized zirconia (YSZ)(More)