Hendrick J Harwood

Learn More
Squalene synthase catalyzes the biosynthesis of squalene, a key cholesterol precursor, through a reductive dimerization of two farnesyl diphosphate (FPP) molecules. The reaction is unique when compared with those of other FPP-utilizing enzymes and proceeds in two distinct steps, both of which involve the formation of carbocationic reaction intermediates.(More)
The economic cost to society from alcohol abuse and alcoholism in the United States was an estimated $148 billion in 1992. When adjusted for inflation and population, the estimates are generally comparable with cost estimates produced over the past 20 years. The current estimates are significantly greater than the most recent detailed estimates developed(More)
The process of receptor-mediated endocytosis for receptors that recycle to the cell surface in an active form can be considered as being kinetically analogous to that of a uni-substrate, uni-product enzyme-catalysed reaction. In this study we have derived steady-state initial-velocity rate equations for this process, based on classical Briggs-Haldane and(More)
Sterol regulatory element-binding proteins (SREBPs) are major transcriptional regulators of cholesterol, fatty acid, and glucose metabolism. Genetic disruption of SREBP activity reduces plasma and liver levels of cholesterol and triglycerides and insulin-stimulated lipogenesis, suggesting that SREBP is a viable target for pharmacological intervention. The(More)
A microsomal triglyceride transfer protein (MTP) inhibitor, CP-346086, was identified that inhibited both human and rodent MTP activity [concentration giving half-maximal inhibition (IC50) 2.0 nM]. In Hep-G2 cells, CP-346086 inhibited apolipoprotein B (apoB) and triglyceride secretion (IC50 2.6 nM) without affecting apoA-I secretion or lipid synthesis. When(More)
Type 2 diabetes mellitus is a major health problem of increasing incidence. To better study the pathogenesis and potential therapeutic agents for this disease, appropriate animal models are needed. Old World nonhuman primates (NHPs) are a useful animal model of type 2 diabetes; like humans, the disease is most common in older, obese animals. Before(More)
Squalene synthase catalyzes the first committed step in cholesterol biosynthesis and thus is important as a potential target for therapeutic intervention. In order to determine the important functional domains of the protein, the amino and carboxyl terminal regions thought to be involved in membrane association of the enzyme were removed genetically. The 30(More)
Inhibition of acetyl-CoA carboxylase (ACC), with its resultant inhibition of fatty acid synthesis and stimulation of fatty acid oxidation, has the potential to favorably affect the multitude of cardiovascular risk factors associated with the metabolic syndrome. To achieve maximal effectiveness, an ACC inhibitor should inhibit both the lipogenic tissue(More)
3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMG CoA reductase) controls the rate of cholesterol biosynthesis and is itself modulated through feedback suppression by internalized low density lipoprotein (LDL) cholesterol. We measured HMG CoA reductase protein concentration and microsomal enzyme activity in freshly isolated mononuclear leukocytes from(More)
Over the past decade and a half it has become increasingly clear that adipose tissue is a much more complex organ than was initially considered and that its metabolic functions extend well beyond the classical actions of thermoregulation and of storage and release of fatty acids. In fact, it is now well established that adipose tissue plays a critical role(More)