Hemanta Kumar Mondal

Learn More
Wireless Network-on-Chip (WiNoC) has been recently introduced for addressing the scalability limitations of conventional multi-hop NoC architectures. Existing WiNoC architectures generally use millimeter-wave antennas without significant directional gains, along with token passing protocol to access the shared wireless medium. This limits the achievable(More)
Networks-on-Chip (NoC) have emerged as communication backbones for enabling high degree of integration in future many-core chips. Despite their advantages, the communication is multi-hop and causes high latency and power dissipation, especially in larger systems. Wireless Network-on-Chip (WNoC) significantly improves the latency over traditional wired NoCs(More)
Networks-on-Chip (NoCs) have garnered significant interest as communication backbone for multicore processors used across a wide range of fields that demand higher computation capability. Wireless NoCs (WNoCs) by augmenting single hop, long range wireless links with wired interconnects; offer the most promising solution to reduce multi-hop long distance(More)
Networks-on-Chip (NoCs) have been well accepted for energy efficient on-chip communications for multicore systems. But, a NoC router consumes considerable leakage power even when not in use. For large scale systems, number of unused routers at any time is reasonably high. A significant amount of this leakage power can be saved by applying fine-grained(More)
Network-on-Chip (NoC) with wireless interconnects is one of the potential solutions to overcome limitations of conventional NoC architectures over far-apart communications in multicore systems. Detailed investigations of Wireless NoC (WNoC) highlight their many benefits. But, idle-state power consumption associated with WI interfaces and routers is(More)
Summary form only given, as follows. The complete presentation was not made available for publication as part of the conference proceedings. Current commercial System-on-Chip (SoC) designs integrate an increasingly large number of predesigned cores, and their number is predicted to increase significantly in the near future. These stateof- the-art commercial(More)