Learn More
Changes in cytoprotective signaling may influence cardiac aging, and underpin sensitization to ischemic insult and desensitization to 'anti-ischemic' therapies. We tested whether age-dependent shifts in ischemia-reperfusion (I-R) tolerance in murine and human myocardium are associated with reduced efficacies and coupling of membrane, cytoplasmic and(More)
Traumatic brain injury (TBI) enhances pro-inflammatory responses, neuronal loss and long-term behavioral deficits. Caveolins (Cavs) are regulators of neuronal and glial survival signaling. Previously we showed that astrocyte and microglial activation is increased in Cav-1 knock-out (KO) mice and that Cav-1 and Cav-3 modulate microglial morphology. We(More)
BACKGROUND Exposure to anesthetics during synaptogenesis results in apoptosis and subsequent cognitive dysfunction in adulthood. Probrain-derived neurotrophic factor (proBDNF) is involved in synaptogenesis and can induce neuronal apoptosis via p75 neurotrophic receptors (p75). proBDNF is cleaved into mature BDNF (mBDNF) by plasmin, a protease converted from(More)
BACKGROUND The aged brain exhibits a loss in gray matter and a decrease in spines and synaptic densities that may represent a sequela for neurodegenerative diseases such as Alzheimer's. Membrane/lipid rafts (MLR), discrete regions of the plasmalemma enriched in cholesterol, glycosphingolipids, and sphingomyelin, are essential for the development and(More)
N-Methyl-D-aspartate (NMDA) receptor (NMDAR) activation and downstream signaling are important for neuronal function. Activation of prosurvival Src family kinases and extracellular signal-regulated kinase (ERK) 1/2 is initiated by NMDAR activation, but the cellular organization of these kinases in relation to NMDARs is not entirely clear. We hypothesized(More)
Experiments have been carried out to ascertain whether intracortical inhibitory processes influence the ocular dominance of monocularly dominated cells in the primary visual cortex of the normal cat. The GABA antagonist bicuculline has been iontophoretically applied to the cells studied to produce a localised block of inhibitory mechanisms acting on them.(More)
The role of caveolae, membrane microenvironments enriched in signaling molecules, in myocardial ischemia is poorly defined. In the current study, we used cardiac myocytes prepared from adult rats to test the hypothesis that opioid receptors (OR), which are capable of producing cardiac protection in vivo, promote cardiac protection in cardiac myocytes in a(More)
Decreased expression of prosurvival and progrowth-stimulatory pathways, in addition to an environment that inhibits neuronal growth, contribute to the limited regenerative capacity in the central nervous system following injury or neurodegeneration. Membrane/lipid rafts, plasmalemmal microdomains enriched in cholesterol, sphingolipids, and the protein(More)
BACKGROUND Propofol exposure to neurons during synaptogenesis results in apoptosis, leading to cognitive dysfunction in adulthood. Previous work from our laboratory showed that isoflurane neurotoxicity occurs through p75 neurotrophin receptor (p75(NTR)) and subsequent cytoskeleton depolymerization. Given that isoflurane and propofol both suppress neuronal(More)