Helong Jiang

Learn More
The physiological characteristics of ten bacterial strains isolated from phenol-degrading aerobic granules were evaluated in order to identify competitive traits for dominant growth in aerobic granules. The ten strains showed a wide diversity in specific growth rates and oxygen utilization kinetics, and could be divided into four catabolic types of phenol(More)
A Gram-positive bacterium, designated strain AG019(T), was isolated by micromanipulation from aerobic granules obtained from a laboratory-scale sequencing batch reactor. This isolate grew axenically as cocci clustered predominantly in tetrads, and was morphologically similar to the dominant organisms observed in the biomass. The morphology also resembled(More)
Bacterial community composition of different sized aggregates within the Microcystis cyanobacterial phycosphere were determined during summer and fall in Lake Taihu, a eutrophic lake in eastern China. Bloom samples taken in August and September represent healthy bloom biomass, whereas samples from October represent decomposing bloom biomass. To improve our(More)
The aim of this study is to evaluate the utility of using aerobic acetate-fed microbial granules as a starting seed to rapidly develop stable aerobic phenol-degrading granules. Aerobic granules were first cultivated in four sequencing batch reactors with acetate as sole carbon source at a loading rate of 3.8 kg m(-3) d(-1). Phenol was then added to reactors(More)
Aerobic granules are self-immobilized aggregates of microorganisms and represent a relatively new form of cell immobilization developed for biological wastewater treatment. In this study, both culture-based and culture-independent techniques were used to investigate the bacterial diversity and function in aerobic phenol- degrading granules cultivated in a(More)
The effect of coaggregation of the two bacterial strains Propioniferax-like PG-02 and Comamonassp. PG-08 on phenol degradation and aerobic granulation was investigated. While PG-02 was characterized as a phenol-degrader with a low half-saturation kinetics constant, PG-08 possessed strong aggregation ability with poor phenol degradation ability. The two(More)
Two sequential aerobic sludge blanket reactors were concurrently operated to examine the effect of Ca2+ augmentation on aerobic granulation. Augmentation with 100 mg Ca2+ l−1 significantly decreased the time to cultivate aerobically grown microbial granules from 32 d to 16 d. Ca2+-fed granules were denser and more compact, showed better settling and(More)
In the present study, the effects of different pretreatment methods for sediments on the performance of sediment microbial fuel cells (SMFCs) were evaluated. Autoclaved (30 and 60 min), and heated (150 °C, 3 h) sediments demonstrated high power density, compared with control and heated (60 °C, 3 h) sediments. An SMFC with heated (60 °C, 3 h) sediment was(More)
Investigations on the extracellular polymeric substances (EPS) are crucial for better understanding the growth and proliferation of cyanobacterium Microcystis aeruginosa. In this study, a combined approach of fractionation procedure and parallel factor (PARAFAC) analysis were applied to characterize the EPS of M. aeruginosa. Physicochemical analysis showed(More)
Enhanced knowledge on the binding of heavy metal (HM) with dissolved organic matter (DOM) is essential for understanding the toxicity and migration of HMs. In this study, two-dimensional correlation spectroscopy (2D-COS) and parallel factor (PARAFAC) analysis were combined to characterize the metal binding properties of DOMs, which were respectively(More)