Learn More
Non-local correlations between spatially separated systems have been extensively discussed in the context of the Einstein, Podolsky and Rosen (EPR) paradox and Bell's inequalities. Many proposals and experiments designed to test hidden variable theories and the violation of Bell's inequalities have been reported; usually, these involve correlated photons,(More)
We present a split-beam neutron interferometric experiment to test the non-cyclic geometric phase tied to the spatial evolution of the system: the subjacent two-dimensional Hilbert space is spanned by the two possible paths in the interferometer and the evolution of the state is controlled by phase shifters and absorbers. A related experiment was reported(More)
We report a single-neutron optical experiment to demonstrate the violation of a Bell-like inequality. Entanglement is achieved not between particles, but between the degrees of freedom, in this case, for a single-particle. The spin-1/2 property of neutrons are utilized. The total wave function of the neutron is described in a tensor product Hilbert space. A(More)
By means of neutron interferometry the s-wave neutron scattering length of the (3)He nucleus was re-measured at the Institut Laue-Langevin (ILL). Using a skew symmetrical perfect crystal Si-interferometer and a linear twin chamber cell, false phase shifts due to sample misalignment were reduced to a negligible level. Simulation calculations suggest an(More)
  • 1