Learn More
The analysis of STRs is the main tool when studying genetic diversity in populations or when addressing individual identification in forensic casework. Population data are needed to establish reference databases that can be used in the forensic context. To that end, this work investigated five population samples from Albania, Iraq, Lithuania, Slovenia, and(More)
In crime cases with available DNA evidence, the amount of DNA is often sparse due to the setting of the crime. In such cases, allelic drop-out of one or more true alleles in STR typing is possible. We present a statistical model for estimating the per locus and overall probability of allelic drop-out using the results of all STR loci in the case sample as(More)
DNA samples found at a scene of crime or obtained from the debris of a mass disaster accident are often subject to degradation. When using the STR DNA technology, the DNA profile is observed via a so-called electropherogram (EPG), where the alleles are identified as signal peaks above a certain level or above a signal to noise threshold. Degradation implies(More)
We discuss the model for estimating drop-out probabilities presented by Tvedebrink et al. [7] and the concerns, that have been raised. The criticism of the model has demonstrated that the model is not perfect. However, the model is very useful for advanced forensic genetic work, where allelic drop-out is occurring. With this discussion, we hope to improve(More)
Second-generation sequencing (SGS) using Roche/454 and Illumina platforms has proved capable of sequencing the majority of the key forensic genetic STR systems. Given that Roche has announced that the 454 platforms will no longer be supported from 2015, focus should now be shifted to competing SGS platforms, such as the MiSeq (Illumina) and the Ion Personal(More)
Recently, there has been much debate about what kinds of genetic markers should be implemented as new core loci that constitute national DNA databases. The choices lie between conventional STRs, ranging in size from 100 to 450 bp; mini-STRs, with amplicon sizes less than 200 bp; and single nucleotide polymorphisms (SNPs). There is general agreement by the(More)
We compared the performance of two recently released 17 loci STR multiplexes for human identification: Applied Biosystems's AmpFℓSTR(®) NGMSElect™ and Promega's PowerPlex(®) ESI17. The comparative parameters were chosen by their relevance in forensic identification and particularly in crime cases. The comparative analyses encompass: amplification ability,(More)
Recently, the Yfiler® Plus PCR Amplification Kit (Yfiler® Plus, Thermo Fisher Scientific, Waltham, MA, USA) was introduced. Yfiler® Plus amplifies 27 Y-chromosomal short tandem repeat loci (Y-STRs) and adds ten new Y-STRs to those analysed with the commonly used AmpFlSTR® Yfiler® PCR Amplification Kit (Yfiler®, Thermo Fisher Scientific, Waltham, MA, USA).(More)
The Ion Torrent™ HID SNP assay amplified 136 autosomal SNPs and 33 Y-chromosome markers in one PCR and the markers were subsequently typed using the Ion PGM™ second generation sequencing platform. A total of 51 of the autosomal SNPs were selected from the SNPforID panel that is routinely used in our ISO 17025 accredited laboratory. Concordance between the(More)
Estimating the weight of evidence in forensic genetics is often done in terms of a likelihood ratio, LR. The LR evaluates the probability of the observed evidence under competing hypotheses. Most often, probabilities used in the LR only consider the evidence from the genomic variation identified using polymorphic genetic markers. However, modern typing(More)