Helle S. Waagepetersen

Ursula Sonnewald19
Lasse K Bak15
Lasse K. Bak14
19Ursula Sonnewald
15Lasse K Bak
14Lasse K. Bak
Learn More
Protoplasmic astrocytes are critically important to energy metabolism in the CNS. Our current understanding of the metabolic interactions between neurons and glia is based on studies using cultured cells, from which mainly inferential conclusions have been drawn as to the relative roles of neurons and glia in brain metabolism. In this study, we used(More)
Neurons are metabolically handicapped in the sense that they are not able to perform de novo synthesis of neurotransmitter glutamate and gamma-aminobutyric acid (GABA) from glucose. A metabolite shuttle known as the glutamate/GABA-glutamine cycle describes the release of neurotransmitter glutamate or GABA from neurons and subsequent uptake into astrocytes.(More)
The malate-aspartate shuttle and the glycerol phosphate shuttle act to transfer reducing equivalents from NADH in the cytosol to the mitochondria since the inner mitochondrial membrane is impermeable to NADH and NAD+. This transfer of reducing equivalents is essential for maintaining a favorable NAD+/NADH ratio required for the oxidative metabolism of(More)
Glutamate homeostasis in the brain is maintained by its well balanced release, uptake and metabolism. It appears that astrocytes play a prominent role in this context since they possess a very powerful battery of glutamate transporters. Thus, malfunction of astrocytic glutamate transporters will lead to an excessively high extracellular glutamate(More)
We tested the hypothesis that inhibiting glycogen degradation accelerates compound action potential (CAP) failure in mouse optic nerve (MON) during aglycemia or high-intensity stimulation. Axon function was assessed as the evoked CAP, and glycogen content was measured biochemically. Isofagomine, a novel inhibitor of central nervous system (CNS) glycogen(More)
The involvement of brain glycogen in sustaining neuronal activity has previously been demonstrated. However, to what extent energy derived from glycogen is consumed by astrocytes themselves or is transferred to the neurons in the form of lactate for oxidative metabolism to proceed is at present unclear. The significance of glycogen in fueling glutamate(More)
In order to interpret/integrate data obtained with different functional neuroimaging modalities (e.g. fMRI, EEG/MEG, PET/SPECT, fNIRS), forward-generative models of a diversity of brain mechanisms at the mesoscopic level are considered necessary. For the cerebral cortex, the brain structure with possibly the most relevance for functional neuroimaging, a(More)
Maintenance of glutamatergic and GABAergic activity requires a continuous supply of energy since the exocytotic processes as well as high affinity glutamate and GABA uptake and subsequent metabolism of glutamate to glutamine are energy demanding processes. The main energy substrate for the brain under normal conditions is glucose but at the cellular level,(More)
Glucose is the primary energy substrate for the adult mammalian brain. However, lactate produced within the brain might be able to serve this purpose in neurons. In the present study, the relative significance of glucose and lactate as substrates to maintain neurotransmitter homeostasis was investigated. Cultured cerebellar (primarily glutamatergic) neurons(More)
Although the brain utilizes glucose for energy production, individual brain cells may to some extent utilize substrates derived from glucose. Thus, it has been suggested that neurons consume extracellular lactate during synaptic activity. However, the precise role of lactate for fueling neuronal activity is still poorly understood. Recently, we demonstrated(More)