Helio R. Moutinho

Learn More
The classic grain-boundary (GB) model concludes that GBs in polycrystalline semiconductors create deep levels that are extremely harmful to optoelectronic applications. However, our first-principles density-functional theory calculations reveal that, surprisingly, GBs in CuInSe2 (CIS) do not follow the classic GB model: GBs in CIS do not create deep levels(More)
We used low-temperature cathodoluminescence (CL) spectrum imaging (CLSI) with nanoscale spatial resolution to examine charge-carrier recombination and defects at grain boundaries (GBs) and grain interiors (GIs) in as-deposited and CdCl<sub>2</sub>-treated CdTe thin films. Supporting time-resolved photoluminescence, T = 4 K photoluminescence, secondary ion(More)
We measure silane density and Sulfo-EMCS cross-linker coupling efficiency on aminosilane films by high-resolution X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) measurements. We then characterize DNA immobilization and hybridization on these films by (32)P-radiometry. We find that the silane film structure controls the efficiency(More)
We have measured and compared surface roughness and the degree of damage for wafers cut by three different sawing techniques - slurry, Ni-based diamond wire, and resin-based diamond wire sawing. The local damage was determined by angle polishing followed by defect etching, TEM, SEM/EBSD imaging and Raman imaging. It showed that each of the cutting processes(More)
Scanning Kelvin probe force microscopy was applied to the microelectrical characterizations of junctions in solar cell devices. Surface Fermi-level pinning effects on the surface potential measurement were avoided by applying a bias voltage (V(b)) to the device and taking the V(b)-induced potential and electric field changes. Two characterizations are(More)
CdTe cell efficiencies have increased from 17% to 21% in the past three years and now rival polycrystalline Si [1]. Research is now targeting 25% to displace Si, attain costs less than 40 cents/W, and reach grid parity. Recent efficiency gains have come largely from greater photocurrent. There is still headroom to lower costs and improve performance by(More)
Phosphorus diffusion in single crystal and polycrystalline CdTe material is explored using various methods. Dynamic secondary ion mass spectroscopy (SIMS) is used to determine 1D P diffusion profiles. A 2D diffusion model is used to determine the expected cross-sectional distribution of P in CdTe after diffusion anneals. Time of flight SIMS and(More)
We successfully applied scanning capacitance spectroscopy (SCS) on CIGS solar cells. In SCS, a high-quality insulating layer is needed to block the AC and DC conductance between the probe and sample. A sample preparation procedure was developed on CIGS/CdS cross-sectional samples for optimal and reproducible results. Spectra taken with 10-nm intervals(More)
We have investigated various mechanisms that participate in formation of a good, screen-printed, Si-Al contact on the back side of a crystalline-Si solar cell. We observed a rapid diffusion of Si into Al during the temperature ramp-up. The Si diffusion produces a graded composition that causes an Al-Si melt to initiate from the interface. The interface melt(More)
A key pathway to meeting the Department of Energy SunShot 2020 goals is to reduce financing costs by improving investor confidence through improved photovoltaic (PV) module reliability. A comprehensive approach to further understand and improve PV reliability includes characterization techniques and modeling from module to atomic scale. Imaging techniques,(More)