Helge Uhrigshardt

Learn More
Redox-switches are critical cysteine thiols that are modified in response to changes in the cell's environment conferring a functional effect. S-nitrosylation (SNO) is emerging as an important modulator of these regulatory switches; however, much remains unknown about the nature of these specific cysteine residues and how oxidative signals are interpreted.(More)
S-nitrosation (SNO) of mitochondrial protein cysteines can be cardioprotective. Several targets have been implicated, yet the scope and identification of specific residues has not been fully assessed. To address this, a comprehensive assessment of mitochondrial SNO-modifiable cysteines was performed to determine nitric oxide (NO) susceptible pathways and(More)
AIMS Citrullination, the post-translational conversion of arginine to citrulline by the enzyme family of peptidylarginine deiminases (PADs), is associated with several diseases, and specific citrullinated proteins have been shown to alter function while others act as auto-antigens. In this study, we identified citrullinated proteins in human myocardial(More)
S-nitrosylation (SNO) is an important oxidative posttranslational modification in the regulation of cardiac mitochondria. SNO modification of several mitochondrial proteins has been associated with cardiac preconditioning and improved cell survival following ischemia/reperfusion injury. Due to their labile nature, SNO modifications are challenging to study(More)
  • 1