Helge Schwengler

Learn More
Changes in the mechanical properties of dermis occur during skin aging or tissue remodeling and affect the activity of resident fibroblasts. With the aim to establish elastic culture substrates that reproduce the variable softness of dermis, we determined Young's elastic modulus E of human dermis at the cell perception level using atomic force microscopy.(More)
BACKGROUND The decrease in firmness is a hallmark of skin aging. Accelerated by chronic sun exposure, fundamental changes occur within the dermal extracellular matrix over the years, mainly impairing the collagenous network. AIMS Based on the qualitative and quantitative assessment of skin firmness, in vitro and in vivo studies were carried out to(More)
BACKGROUND   The dermal extracellular matrix provides stability and structure to the skin. With increasing age, however, its major component collagen is subject to degeneration, resulting in a gradual decline in skin elasticity and progression of wrinkle formation. Previous studies suggest that the reduction in cellular energy contributes to the diminished(More)
Ubiquinone (coenzyme Q10, Q10) represents an endogenously synthesized lipid-soluble antioxidant which is crucial for cellular energy production but is diminished with age and under the influence of external stress factors in human skin. Here, it is shown that topical Q10 treatment is beneficial with regard to effective Q10 replenishment, augmentation of(More)
  • 1