Learn More
P2X7 receptors have emerged as potential drug targets for the treatment of medical conditions such as e.g. rheumatoid arthritis and neuropathic pain. To assess the impact of pharmaceuticals on P2X7, we screened a compound library comprising approved or clinically tested drugs and identified several compounds that augment the ATP-triggered P2X7 activity in a(More)
BACKGROUND AND PURPOSE In mammalian cells, the anti-parasitic drug ivermectin is known as a positive allosteric modulator of the ATP-activated ion channel P2X4 and is used to discriminate between P2X4- and P2X7-mediated cellular responses. In this paper we provide evidence that the reported isoform selectivity of ivermectin is a species-specific phenomenon.(More)
BACKGROUND AND PURPOSE P2X7 receptors are ATP-gated cation channels mediating important functions in microglial cells, such as the release of cytokines and phagocytosis. Electrophysiological evidence that these receptors also occur in CNS astroglia is rare and rather incomplete. EXPERIMENTAL APPROACH We used whole-cell patch-clamp recordings to search for(More)
Acamprosate has recently been introduced in relapse prophylaxis in weaned alcoholics. Using fura-2 microfluorimetry, the present study investigates whether acamprosate affects N-methyl-D-aspartate (NMDA) or K+-induced changes in free intracellular Ca2+ concentration ([Ca2+]i) in rat cultured mesencephalic neurones. Both application of NMDA (plus glycine)(More)
Neurogenesis requires the balance between the proliferation of newly formed progenitor cells and subsequent death of surplus cells. RT-PCR and immunocytochemistry demonstrated the presence of P2X7 receptor mRNA and immunoreactivity in cultured neural progenitor cells (NPCs) prepared from the adult mouse subventricular zone (SVZ). Whole-cell patch-clamp(More)
P2X7, an ATP-gated cation channel, is involved in immune cell activation, hyperalgesia and neuropathic pain. By regulating cytokine release in the brain, P2X7 has been linked to the pathophysiology of mood disorders and schizophrenia. We here assess the impact of 123 drugs that act in the central nervous system on human P2X7. Most prominently, the tricyclic(More)
Within the ion channel-coupled purine receptor (P2X) family, P2X7 has gained particular interest because of its role in immune responses and in the growth control of several malignancies. Typical hallmarks of P2X7 are nonselective and noninactivating cation currents that are elicited by high concentrations (0.1-10 mM) of extracellular ATP. Here, we observe(More)
Tanshinone II A sulfonate (TIIAS) was identified as a potent, selective blocker of purinergic receptor P2X7 in a compound library screen. In this study, a detailed characterization of the pharmacologic effects of TIIAS on P2X7 is provided. Because TIIAS is a derivative of tanshinone II A (TIIA) and both compounds have been used interchangeably, TIIA was(More)
Tanshinone II A sulfonate (TIIAS) was identified as a potent, selective blocker of purinergic receptor P2X7 in a compound library screen. In this study, a detailed characterization of the pharmacologic effects of TIIAS on P2X7 is provided. Because TIIAS is a derivative of tanshinone II A (TIIA) and both compounds have been used interchangeably, TIIA was(More)
UNLABELLED J. Neurochem. (2012) 121, 597-606. ABSTRACT In cultured rat neocortical interneurons, we have studied the effect of long-term application of NMDA or AMPA on the surface density of the NMDA (GluN) receptor subunits GluN1 and GluN2B. Stimulation of Ca(2+) -permeable AMPA (GluA) receptors located on the interneurons decreased the response of GluN(More)