Learn More
We propose a new class of approximate local DtN boundary conditions to be applied on prolate spheroid-shaped exterior boundaries when solving acoustic scattering problems by elongated obstacles. These conditions are : (a) exact for the first modes, (b) easy to implement and to parallelize, (c) compatible with the local structure of the computational finite(More)
We develop a new PML formulation for the linearized shallow-water equations including the Coriolis force. The construction process is based on the uncoupling of the velocity components with the depth of water. Then the damping effect is only applied to the propagative modes just as was formerly done by Nataf [1] to the linearized Euler equations to enforce(More)
In some geophysical problems, it is sometimes possible to divide the subsurface resistivity distribution as a one dimensional (1D) contribution plus some two dimensional (2D) inhomogeneities. Assuming this scenario, we split the electromagnetic fields into their primary and secondary components, the former corresponding to the 1D contribution, and the(More)
New approximate local DtN boundary conditions are proposed to be applied on elliptical-or prolate-spheroid exterior boundaries when solving respectively two-or three-dimensional acoustic scattering problems by elongated obstacles. These new absorbing conditions are designed to be exact for the first modes. They can be easily incorporated in any finite(More)
This paper deals with the numerical analysis of two one-way systems derived from the general complete modeling proposed by M.V. De Hoop. The main goal of this work is to compare two different formulations in which a correcting term allows to improve the amplitude of the numerical solution. It comes out that even if the two systems are equivalent from a(More)