Helena Sävenstrand

Learn More
Ultraviolet-B radiation regulates plant growth and morphology at low and ambient fluence rates but can severely impact on plants at higher doses. Some plant UV-B responses are related to the formation of reactive oxygen species (ROS) and pyridoxine (vitamin B(6)) has been reported to be a quencher of ROS. UV-B irradiation of Arabidopsis Col-0 plants(More)
Development of transgenic edible plants, to be used as production, storage and delivery systems for recombinant vaccine antigens, is a promising strategy to obtain cost effective vaccines against infectious diseases, not least for use in developing countries. Therefore, we used Agrobacterium tumefaciens-mediated gene transfer to introduce the p24 gag gene(More)
An optimized gene expression construct was designed in order to increase the accumulation of the HIV-1 subtype C p24 protein in Arabidopsis thaliana and carrot (Daucus carota) plants. An ER retention signal was introduced into the genetic construct generating a p24 protein containing a SEKDEL amino acid sequence at its C-terminus. Mature A. thaliana plants(More)
The involvement of brassinosteroids in signalling events in plants during UV-B stress (280-315 nm) was investigated in Arabidopsis thaliana. Brassinosteroids are involved in growth and development in plants and have also been shown to enhance stress tolerance. Three mutants deficient in the biosynthetic pathway of brassinolide (BL; det2, dim1 and cpd) and(More)
Plants are constantly subjected to environmental changes and have developed various defence mechanisms to facilitate their continued existence. Pisum sativum plants were exposed to low levels of UV-B radiation and ELIP (early light-inducible proteins) mRNA, with a probable protective function, was rapidly and strongly induced during this type of stress. To(More)
Suppression subtractive hybridisation was used to isolate heavy metal-induced genes from Pisum sativum roots hydroponically exposed to 5 microM HgCl2 and 10 microM EDTA. Six genes were induced out of which one, PsHMIP6B, was novel. The other genes (PsSAMT, PsI2'H, PsNDA, PsAPSR, PsPOD) had not previously been isolated from pea and sequenced. All six genes(More)
Suppression subtractive hybridisation was used to isolate genes differentially regulated by low levels (UV-B(BE,300) 0.13 W m(-2)) of ultraviolet-B radiation (UV-B; 290-320 nm) in Pisum sativum. Six genes were regulated, two of which were novel. The mRNA levels for these two (PsTSDC and PsUOS1) were increased and depressed by UV-B treatment, respectively.(More)
BACKGROUND All-trans retinoic acid (atRA) plays an essential role in the regulation of gene expression, cell growth and differentiation and is also important for normal cardiovascular development but may in turn be involved in cardiovascular diseases, i.e. atherosclerosis and restenosis. The cellular atRA levels are under strict control involving several(More)
Homology models of CYP26B1 (cytochrome P450RAI2) and CYP26B1 spliced variant were derived using the crystal structure of cyanobacterial CYP120A1 as template for the model building. The quality of the homology models generated were carefully evaluated, and the natural substrate all-trans-retinoic acid (atRA), several tetralone-derived retinoic acid(More)
The glyoxysomal malate dehydrogenase (gMDH) catalyses the formation of oxaloacetate from malate during beta-oxidation of fatty acids in the glyoxysome. A partial Pisum sativum L. (cv. Greenfeast) cDNA was first isolated from a suppression subtractive hybridisation cDNA library obtained from heavy metal stressed plants. The full length cDNA was then isolated(More)
  • 1