Helena Catarina Pereira

  • Citations Per Year
Learn More
The pulse pressure waveform has, for long, been known as a fundamental biomedical signal and its analysis is recognized as a non-invasive, simple, and resourceful technique for the assessment of arterial vessels condition observed in several diseases. In the current paper, waveforms from non-invasive optical probe that measures carotid artery distension(More)
The Arterial Pressure Waveform (APW) can provide essential information about arterial wall integrity and arterial stiffness. Most of APW analysis frameworks individually process each hemodynamic parameter and do not evaluate inter-dependencies in the overall pulse morphology. The key contribution of this work is the use of machine learning algorithms to(More)
The purpose of this study was the development of a clustering methodology to deal with arterial pressure waveform (APW) parameters to be used in the cardiovascular risk assessment. One hundred sixteen subjects were monitored and divided into two groups. The first one (23 hypertensive subjects) was analyzed using APW and biochemical parameters, while the(More)
Local pulse-wave velocity (PWV) is an accurate indicator of the degree of arteriosclerosis (stiffness) in an artery, providing a direct characterization of the properties of its wall. Devices currently available for local PWV measurement are mainly based on ultrasound systems and have not yet been generalized to clinical practice since they require high(More)
A new type of optical probe based on laser Doppler self-mixing technology, for a truly non-contact measurement in a single location, and extraction of the temporal features of the distension wave in the arterial wall, was developed. The monitoring of temporal features allows the assessment of cardiovascular function when measurement is carried out at the(More)