Learn More
The nephron is the basic structural and functional unit of the vertebrate kidney. It is composed of a glomerulus, the site of ultrafiltration, and a renal tubule, along which the filtrate is modified. Although widely regarded as a vertebrate adaptation, 'nephron-like' features can be found in the excretory systems of many invertebrates, raising the(More)
Ureteric contractions propel foetal urine from the kidney to the urinary bladder. Here, we show that mouse ureteric smooth muscle cell (SMC) precursors express the transcription factor teashirt 3 (TSHZ3), and that Tshz3-null mutant mice have congenital hydronephrosis without anatomical obstruction. Ex vivo, the spontaneous contractions that occurred in(More)
During development, small RhoGTPases control the precise cell shape changes and movements that underlie morphogenesis. Their activity must be tightly regulated in time and space, but little is known about how Rho regulators (RhoGEFs and RhoGAPs) perform this function in the embryo. Taking advantage of a new probe that allows the visualisation of small(More)
Molecular biology is reaching new depths in our understanding of the development and physiology of Malpighian tubules. In Diptera, Malpighian tubules derive from ectodermal cells that evaginate from the primitive hindgut and subsequently undergo a sequence of orderly events that culminates in an active excretory organ by the time the larva takes its first(More)
Members of the Rho family of small GTPases are required for many of the morphogenetic processes required to shape the animal body. The activity of this family is regulated in part by a class of proteins known as RhoGTPase Activating Proteins (RhoGAPs) that catalyse the conversion of RhoGTPases to their inactive state. In our search for genes that regulate(More)
Organs are made up of cells from separate origins, whose development and differentiation must be integrated to produce a physiologically coherent structure. For example, during the development of the kidney, a series of interactions between the epithelial mesonephric duct and the surrounding metanephric mesenchyme leads to the formation of renal tubules.(More)
Most epithelial tubes arise as small buds and elongate by regulated morphogenetic processes including oriented cell division, cell rearrangements, and changes in cell shape. Through live analysis of Drosophila renal tubule morphogenesis we show that tissue elongation results from polarised cell intercalations around the tubule circumference, producing(More)
The normal development of an organ depends on the coordinated regulation of multiple cell activities. Focusing on tubulogenesis, we review the role of specialised cells or groups of cells that are selected from within tissue primordia and differentiate at the outgrowing tips or leading edge of developing tubules. Tip or leading cells develop distinctive(More)
Two ZP domain proteins, Piopio and Dumpy, have been shown to contribute to the apical extracellular matrix and to play a decisive role in regulating the transition from multicellular-to-unicellular tube structure in Drosophila tracheal development. The tube is a common shape in biology. Its function is to transport materials from one site to another. A(More)
The segment polarity gene wingless encodes a cysteine rich protein which is essential for pattern formation in Drosophila. Using polyclonal antibodies against the product of the wingless gene, we demonstrate that this protein is secreted in the embryo and that it is taken up by neighbouring cells. The protein can be found two or three cell diameters away(More)