Learn More
The ARF tumour suppressor is a product of the INK4a/ARF locus; a sequence that is frequently altered in human cancer. ARF is upregulated by oncogenic stimuli and is a critical regulator of p53 stability through interactions with the mdm2 and ARF-BP1/Mule ubiquitin ligases. Cellular stress signals liberate ARF from the nucleolus where it is bound to(More)
Induction of senescence permanently restricts cellular proliferation after oncogenic stimulation thereby acting as a potent barrier to tumor development. The relevant effector proteins may therefore be fundamental to cancer development. A recent study identified IGFBP7 as a secreted factor mediating melanocyte senescence induced by oncogenic B-RAF, which is(More)
PURPOSE Melanoma-associated germ-line mutations affecting the tumor suppressor and cyclin-dependent kinase (CDK) inhibitor, CDKN2A/p16(INK4a) have been identified in >100 melanoma-prone families. To predict the melanoma risk for carriers of specific mutations, it is useful to test the function of the mutant proteins in biochemical assays; however, it is(More)
Aberrant activation of the BRAF kinase occurs in ∼60% of melanomas, and although BRAF inhibitors have shown significant early clinical success, acquired resistance occurs in most patients. Resistance to chronic BRAF inhibition often involves reactivation of mitogen-activated protein kinase (MAPK) signaling, and the combined targeting of BRAF and its(More)
UNLABELLED Deregulated glucose metabolism fulfills the energetic and biosynthetic requirements for tumor growth driven by oncogenes. Because inhibition of oncogenic BRAF causes profound reductions in glucose uptake and a strong clinical benefit in BRAF-mutant melanoma, we examined the role of energy metabolism in responses to BRAF inhibition. We observed(More)
Inherited mutations affecting the INK4a/ARF locus (CDKN2A) are associated with melanoma susceptibility in 40% of multiple case melanoma families. Over 60 different germline INK4a/ARF mutations have been detected in more than 190 families worldwide. The majority of these alterations are missense mutations affecting p16(INK4a), and only 25% of these have been(More)
Metastatic melanoma represents a major clinical problem. Its incidence continues to rise in western countries and there are currently no curative treatments. While mutation of the P53 tumour suppressor gene is a common feature of many types of cancer, mutational inactivation of P53 in melanoma is uncommon; however, its function often appears abnormal. In(More)
Repeat tumor biopsies to study genomic changes during therapy are difficult, invasive and data are confounded by tumoral heterogeneity. The analysis of circulating tumor DNA (ctDNA) can provide a non-invasive approach to assess prognosis and the genetic evolution of tumors in response to therapy. Mutation-specific droplet digital PCR was used to measure(More)
Metabolic heterogeneity is a key factor in cancer pathogenesis. We found that a subset of BRAFand NRASmutant human melanomas resistant to the MEK inhibitor selumetinib displayed increased oxidative phosphorylation (OxPhos) mediated by the transcriptional coactivator PGC1a. Notably, all selumetinibresistant cells with elevated OxPhos could be resensitized by(More)
BRAF and MEK inhibitors, alone or in combination, are highly active in the 40% of patients with BRAF mutant metastatic melanoma. Despite this activity resistance often develops in patients treated with these agents. This review summarises the biology of the mitogen activated protein kinase (MAPK) pathway, with particular reference to the effects of BRAF and(More)