Helen R Saibil

Learn More
The bacterial toxin pneumolysin is released as a soluble monomer that kills target cells by assembling into large oligomeric rings and forming pores in cholesterol-containing membranes. Using cryo-EM and image processing, we have determined the structures of membrane-surface bound (prepore) and inserted-pore oligomer forms, providing a direct observation of(More)
The double-ring chaperonin GroEL mediates protein folding in the central cavity of a ring bound by ATP and GroES, but it is unclear how GroEL cycles from one folding-active complex to the next. We observe that hydrolysis of ATP within the cis ring must occur before either nonnative polypeptide or GroES can bind to the trans ring, and this is associated with(More)
Small heat shock proteins (sHsps) are a conserved protein family, with members found in all organisms analysed so far. Several sHsps have been shown to exhibit chaperone activity and protect proteins from irreversible aggregation in vitro. Here we show that Hsp26, an sHsp from Saccharomyces cerevisiae, is a temperature-regulated molecular chaperone. Like(More)
The chaperonin GroEL drives its protein-folding cycle by cooperatively binding ATP to one of its two rings, priming that ring to become folding-active upon GroES binding, while simultaneously discharging the previous folding chamber from the opposite ring. The GroEL-ATP structure, determined by cryo-EM and atomic structure fitting, shows that the(More)
Chaperonin-assisted protein folding proceeds through cycles of ATP binding and hydrolysis by the large chaperonin GroEL, which undergoes major allosteric rearrangements. Interaction between the two back-to-back seven-membered rings of GroEL plays an important role in regulating binding and release of folding substrates and of the small chaperonin GroES.(More)
All organisms have to monitor the folding state of cellular proteins precisely. The heat-shock protein DegP is a protein quality control factor in the bacterial envelope that is involved in eliminating misfolded proteins and in the biogenesis of outer-membrane proteins. Here we describe the molecular mechanisms underlying the regulated protease and(More)
The Escherichia coli twin arginine translocation (Tat) system mediates Sec-independent export of protein precursors bearing twin arginine signal peptides. The genes tatA, tatB, tatC and tatE code for integral membrane proteins that are components of the Tat pathway. Cells co-overexpressing tatABCDE show an increased rate of export of a signal(More)
The small heat shock proteins (sHSPs) recently have been reported to have molecular chaperone activity in vitro; however, the mechanism of this activity is poorly defined. We found that HSP18.1, a dodecameric sHSP from pea, prevented the aggregation of malate dehydrogenase (MDH) and glyceraldehyde-3-phosphate dehydrogenase heated to 45 degrees C. Under(More)
Prion propagation involves the conversion of cellular prion protein (PrPC) into a disease-specific isomer, PrPSc, shifting from a predominantly alpha-helical to beta-sheet structure. Here, conditions were established in which recombinant human PrP could switch between the native alpha conformation, characteristic of PrPC, and a compact, highly soluble,(More)
Natural killer cells and cytotoxic T lymphocytes accomplish the critically important function of killing virus-infected and neoplastic cells. They do this by releasing the pore-forming protein perforin and granzyme proteases from cytoplasmic granules into the cleft formed between the abutting killer and target cell membranes. Perforin, a 67-kilodalton(More)