Helen R Mott

Learn More
Specific modifications to histones are essential epigenetic markers---heritable changes in gene expression that do not affect the DNA sequence. Methylation of lysine 9 in histone H3 is recognized by heterochromatin protein 1 (HP1), which directs the binding of other proteins to control chromatin structure and gene expression. Here we show that HP1 uses an(More)
Protein molecules have the ability to form a rich variety of natural and artificial structures and materials. We show that amyloid fibrils, ordered supramolecular nanostructures that are self-assembled from a wide range of polypeptide molecules, have rigidities varying over four orders of magnitude, and constitute a class of high-performance biomaterials.(More)
The proteins Cdc42 and Rac are members of the Rho family of small GTPases (G proteins), which control signal-transduction pathways that lead to rearrangements of the cell cytoskeleton, cell differentiation and cell proliferation. They do so by binding to downstream effector proteins. Some of these, known as CRIB (for Cdc42/Rac interactive-binding) proteins,(More)
HP1 family proteins are adaptor molecules, containing two related chromo domains that are required for chromatin packaging and gene silencing. Here we present the structure of the chromo shadow domain from mouse HP1beta bound to a peptide containing a consensus PXVXL motif found in many HP1 binding partners. The shadow domain exhibits a novel mode of(More)
The exocyst complex is involved in the final stages of exocytosis, when vesicles are targeted to the plasma membrane and dock. The regulation of exocytosis is vital for a number of processes, for example, cell polarity, embryogenesis, and neuronal growth formation. Regulation of the exocyst complex in mammals was recently shown to be dependent upon binding(More)
The cross-β amyloid form of peptides and proteins represents an archetypal and widely accessible structure consisting of ordered arrays of β-sheet filaments. These complex aggregates have remarkable chemical and physical properties, and the conversion of normally soluble functional forms of proteins into amyloid structures is linked to many debilitating(More)
The Raf-1 protein kinase is the best-characterized downstream effector of activated Ras. Interaction with Ras leads to Raf-1 activation and results in transduction of cell growth and differentiation signals. The details of Raf-1 activation are unclear, but our characterization of a second Ras-binding site in the cysteine-rich domain (CRD) and the(More)
The Rho family GTPases, Cdc42, Rac and Rho, regulate signal transduction pathways via interactions with downstream effector proteins. We report here the solution structure of Cdc42 bound to the GTPase binding domain of αPAK, an effector of both Cdc42 and Rac. The structure is compared with those of Cdc42 bound to similar fragments of ACK and WASP, two(More)
IQGAP1 contains a domain related to the catalytic portion of the GTPase-activating proteins (GAPs) for the Ras small G proteins, yet it has no RasGAP activity and binds to the Rho family small G proteins Cdc42 and Rac1. It is thought that IQGAP1 is an effector of Rac1 and Cdc42, regulating cell-cell adhesion through the E-cadherin-catenin complex, which(More)
In a mammalian host, the cell surface of African trypanosomes is protected by a monolayer of a single variant surface glycoprotein (VSG). The VSG is central to antigenic variation; one VSG gene is expressed at any one time and there is a low frequency stochastic switch to expression of a different VSG gene. The genome of Trypanosoma brucei contains a(More)