Learn More
Previous studies have suggested that the minimal cellular genome could be as small as 400 kilobases. Here, we report the complete genome sequence of the psyllid symbiont Carsonella ruddii, which consists of a circular chromosome of 159,662 base pairs, averaging 16.5% GC content. It is by far the smallest and most AT-rich bacterial genome yet characterized.(More)
Mutualistic intracellular symbiosis between bacteria and insects is a widespread phenomenon that has contributed to the global success of insects. The symbionts, by provisioning nutrients lacking from diets, allow various insects to occupy or dominate ecological niches that might otherwise be unavailable. One such insect is the glassy-winged sharpshooter(More)
Symbiosis is a ubiquitous phenomenon generating biological complexity, affecting adaptation, and expanding ecological capabilities. However, symbionts, which can be subject to genetic limitations such as clonality and genomic degradation, also impose constraints on hosts. A model of obligate symbiosis is that between aphids and the bacterium Buchnera(More)
BACKGROUND The best studied insect-symbiont system is that of aphids and their primary bacterial endosymbiont Buchnera aphidicola. Buchnera inhabits specialized host cells called bacteriocytes, provides nutrients to the aphid and has co-speciated with its aphid hosts for the past 150 million years. We have used a single microarray to examine gene expression(More)
We found that insertion sequence (IS) elements are unusually abundant in the relatively recently evolved bacterial endosymbionts of maize weevils. Because multicopy elements can facilitate genomic recombination and deletion, this IS expansion may represent an early stage in the genomic reduction that is common in most ancient endosymbionts.
Analysis of many bacterial genomes is impeded by the inability to separate individual species from complex mixtures of cells or to propagate cells in pure culture. This problem is an obstacle to the study of many bacterial symbionts that live intracellularly in insects and other animals. To recover bacterial DNA from complex samples, we devised a method(More)
  • 1