Helen Dacres

Learn More
Förster resonance energy transfer (RET) is the nonradiative transfer of energy from a donor to an acceptor fluorophore. The Förster distance (R(0)), being the fluorophore separation corresponding to 50% of the maximum RET efficiency (E(RET)), is a critical parameter for optimization of RET biosensors. Sensitive RET-based monitoring of molecular(More)
Bioluminescence resonance energy transfer (BRET) is an important tool for monitoring macromolecular interactions and is useful as a transduction technique for biosensor development. Förster distance (R(0)), the intermolecular separation characterized by 50% of the maximum possible energy transfer, is a critical BRET parameter. R(0) provides a means of(More)
Bioluminescence resonance energy transfer (BRET) is a powerful tool for the study of protein-protein interactions and conformational changes within proteins. Two common implementations of BRET are BRET(1) with Renilla luciferase (RLuc) and coelenterazine h (CLZ, lambda(em) approximately 475 nm) and BRET(2) with the substrate coelenterazine 400a (CLZ400A(More)
In this study, a representative FRET system (CFP donor and YFP acceptor) is compared with the BRET(2) system (Renilla luciferase donor, green fluorescent protein(2) (GFP(2)) acceptor and coelenterazine 400a substrate). Cleavage of a thrombin-protease-sensitive peptide sequence inserted between the donor and acceptor proteins was detected by the RET signal.(More)
In this work we investigate the use of coiled-coil silk proteins, produced in recombinant Escherichia coli, as a new material for immobilizing biosensors. Myoglobin was embedded in transparent honeybee silk protein films. Immobilized myoglobin maintained a high affinity for nitric oxide (KD NO=52 µM) and good sensitivity with a limit of detection of 5 µM.(More)
We have previously shown that a genetically encoded bioluminescent resonance energy transfer (BRET) biosensor, comprising maltose binding protein (MBP) flanked by a green fluorescent protein (GFP(2)) at the N-terminus and a variant of Renilla luciferase (RLuc2) at the C-terminus, has superior sensitivity and limits of detection for maltose, compared with an(More)
Bioluminescence is the emission of visible light by living organisms. Here we describe the isolation and characterisation of a cDNA encoding a MW ≈ 59,000 Da luciferase from the Australian glow-worm, Arachnocampa richardsae. The enzyme is a member of the acyl-CoA ligase superfamily and produces blue light on addition of D-luciferin. These results are(More)
All human senses, other than smell, can be readily represented by definable physical surrogates. Our sense of hot and cold approximates temperature as measured by a thermometer; touch equates to pressure; balance measures orientation and acceleration; vision integrates measures of the wavelengths and intensities of a portion of the electromagnetic spectrum(More)
A genetically encoded maltose biosensor was constructed, comprising maltose binding protein (MBP) flanked by a green fluorescent protein (GFP(2)) at the N-terminus and a Renilla luciferase variant (RLuc2) at the C-terminus. This Bioluminescence resonance energy transfer(2) (BRET(2)) system showed a 30% increase in the BRET ratio upon maltose binding,(More)
Bioluminescence energy transfer (BRET) is a powerful tool for the study of protein-protein interactions and conformational changes within proteins. We directly compared two recently developed variants of Renilla luciferase (RLuc), RLuc2 and RLuc8, as BRET donors using an in vitro thrombin assay. The comparison was carried out by placing a thrombin-specific(More)