Learn More
We provide evidence that the androgen receptor (AR) can promote nuclear translocation of beta-catenin in LNCaP and PC3 prostate cancer cells. Using AR-expressing cells (LNCaP) and non-AR-expressing cells (PC3) we showed by time course cell fractionation that the AR can shuttle beta-catenin into the nucleus when exposed to exogenous androgen. Cells exposed(More)
Sialyl Lewis X is a tumor-associated antigen frequently found in the advanced cancers. However, the mechanism for the production of this cancer antigen is not entirely clear. The objective of this study is to examine whether epigenetics is involved in the regulation of the formation of this antigen. We observed an increase of sialyl Lewis X in HCT15 cells,(More)
We previously reported that supplementation of a cationic liposome with transferrin (Tf) greatly enhanced lipofection efficiency (P.-W. Cheng, Hum. Gene Ther. 1996;7:275-282). In this study, we examined the efficacy of p53 and PTEN tumor suppressor gene therapy in a mouse xenograft model of human prostate PC-3 carcinoma cells, using a vector consisting of(More)
The glucocorticoid and androgen receptors (GR and AR) can commonly regulate up to 50% of their target genes in prostate cancer (PCa) cells. GR expression is stimulated by castration therapy, which has been proposed to be one mechanism that compensates for AR signaling blockade and promotes castration-resistant PCa (CRPC) progression. However, whether GR(More)
The androgen receptor (AR) is a ligand-dependent transcription factor that has an essential role in the normal growth, development, and maintenance of the prostate gland. The AR is part of a large family of steroid receptors that also includes the glucocorticoid, progesterone, and mineralocorticoid receptors. Steroid receptor family members share(More)
PURPOSE Progression to the castration-resistant state is the incurable and lethal end stage of prostate cancer, and there is strong evidence that androgen receptor (AR) still plays a central role in this process. We hypothesize that knocking down AR will have a major effect on inhibiting growth of castration-resistant tumors. EXPERIMENTAL DESIGN(More)
The androgen receptor (AR), a steroid receptor family member, is a ligand-dependent transcription factor that has an integral role in normal prostate development. Alterations in AR-mediated activity can result in abnormal gene expression, dysregulated cell growth and prostate cancer. Coregulator proteins that interact with AR to influence activity and(More)
Bovine core 2 beta1,6-N-acetylglucosaminyltransferase-M (bC2GnT-M) catalyzes the formation of all mucin beta1,6-N-acetylglucosaminides, including core 2, core 4, and blood group I structures. These structures expand the complexity of mucin carbohydrate structure and thus the functional potential of mucins. The four known mucin(More)
The AR (androgen receptor) is a ligand-regulated transcription factor, which belongs to the steroid receptor family and plays an essential role in growth and development of the prostate. Transcriptional activity of steroid receptors is modulated by interaction with co-regulator proteins and yeast two-hybrid analysis is commonly used to identify these(More)
Progression to androgen independence is the lethal end stage of prostate cancer. We used expression of androgen receptor (AR)-targeted short hairpin RNAs (shRNA) to directly test the requirement for AR in ligand-independent activation of androgen-regulated genes and hormone-independent tumor progression. Transient transfection of LNCaP human prostate cancer(More)