Helen Andrade Arcuri

Learn More
BACKGROUND The functional and structural characterisation of enzymes that belong to microbial metabolic pathways is very important for structure-based drug design. The main interest in studying shikimate pathway enzymes involves the fact that they are essential for bacteria but do not occur in humans, making them selective targets for design of drugs that(More)
Hymenoptera venoms are complex mixtures of biochemically and pharmacologically active components such as biogenic amines, peptides and proteins. Polycationic peptides generally constitute the largest group of Hymenoptera venom toxins, and the mastoparans constitute the most abundant and important class of peptides in the venom of social wasps. These toxins(More)
HCV is prevalent throughout the world. It is a major cause of chronic liver disease. There is no effective vaccine and the most common therapy, based on Peginterferon, has a success rate of ~50%. The mechanisms underlying viral resistance have not been elucidated but it has been suggested that both host and virus contribute to therapy outcome.(More)
BACKGROUND About 130 million people are infected with the hepatitis C virus (HCV) worldwide, but effective treatment options are not yet available. One of the most promising targets for antiviral therapy is nonstructural protein 3 (NS3). To identify possible changes in the structure of NS3 associated with virological sustained response or non-response of(More)
BACKGROUND Hepatitis C virus (HCV) currently infects approximately three percent of the world population. In view of the lack of vaccines against HCV, there is an urgent need for an efficient treatment of the disease by an effective antiviral drug. Rational drug design has not been the primary way for discovering major therapeutics. Nevertheless, there are(More)
It has been reported that Paulistine in the venom of the wasp Polybia paulista co-exists as two different forms: an oxidized form presenting a compact structure due to the presence of a disulfide bridge, which causes inflammation through an apparent interaction with receptors in the 5-lipoxygenase pathway, and a naturally reduced form (without the disulfide(More)
  • 1