Learn More
Throughout development the Arabidopsis shoot apical meristem successively undergoes several major phase transitions such as the juvenile-to-adult and floral transitions until, finally, it will produce flowers instead of leaves and shoots. Members of the Arabidopsis SBP-box gene family of transcription factors have been implicated in promoting the floral(More)
Petunia hybrida is one of the classical subjects of investigation in plants in which the pathway of anthocyanin biosynthesis has been analysed genetically and biochemically. In petunia cyanidin- and delphinidin-derivatives, but no pelargonidin-derivatives are produced as pigments. This is due to the substrate specificity of the dihydroflavonol 4-reductase(More)
In vegetative leaf tissues, cuticles including cuticular waxes are important for protection against nonstomatal water loss and pathogen infection as well as for adaptations to environmental stress. However, their roles in the anther wall are rarely studied. The innermost layer of the anther wall (the tapetum) is essential for generating male gametes. Here,(More)
The outermost epidermal cell wall is specialized to withstand pathogens and natural stresses, and lipid-based cuticular polymers are the major barrier against incursions. The Arabidopsis thaliana mutant bodyguard (bdg), which exhibits defects characteristic of the loss of cuticle structure not attributable to a lack of typical cutin monomers, unexpectedly(More)
Species that express the inflated calyx syndrome (ICS) are found in several genera of the Solanaceae. The MADS-box protein MPF2, together with the plant hormones cytokinin and gibberellin, has been shown to be responsible for this trait in Physalis floridana. We have used sequence data from 114 species belonging to 35 genera to construct a molecular(More)
Homeotic mutants have been useful for the study of animal development. Such mutants are also known in plants. The isolation and molecular analysis of several homeotic genes in Antirrhinum majus provide insights into the underlying molecular regulatory mechanisms of flower development. A model is presented of how the characteristic sequential pattern of(More)
We report the isolation of the FIDDLEHEAD (FDH) gene of Arabidopsis by transposon tagging. Three mutant alleles of FDH carrying insertions of the Enhancer/Suppressor-mutator transposon and one stable allele with a transposon footprint were generated in the Arabidopsis ecotype Columbia genetic background. Closer examination of the adaxial epidermis of(More)
BACKGROUND Differentiation processes are responsible for the diversity and functional specialization of the cell types that compose an organism. The outcome of these processes can be studied at molecular, physiologic, and biochemical levels by comparing different cell types, but the complexity and dynamics of the regulatory processes that specify the(More)
It has been suggested that the middle repetitive class of sequences that make up a large proportion of the eukaryotic genome have been amplified and dispersed by DNA transposition. Transposition is a phenomenon first postulated by Barbara McClintock on the basis of her genetic analysis of mutants in Zea mays. Since then, DNA transposition has been studied(More)