Learn More
Evolutionary developmental genetics (evodevotics) is a novel scientific endeavor which assumes that changes in developmental control genes are a major aspect of evolutionary changes in morphology. Understanding the phylogeny of developmental control genes may thus help us to understand the evolution of plant and animal form. The principles of evodevotics(More)
Several sites of nuclear protein interaction within the promoter region of the Antirrhinum majus floral meristem identity gene SQUAMOSA were detected using an electrophoretic mobility shift assay. One of these sites displayed a particularly clear interaction with nuclear protein extracted from inflorescences but not with nuclear protein extracted from(More)
Deficiens (defA+) is a homeotic gene involved in the genetic control of Antirrhinum majus flower development. Mutation of this gene (defA-1) causes homeotic transformation of petals into sepals and of stamina into carpels in flowers displaying the 'globifera' phenotype, as shown by cross sections and scanning electronmicroscopy of developing flowers. A cDNA(More)
Throughout development the Arabidopsis shoot apical meristem successively undergoes several major phase transitions such as the juvenile-to-adult and floral transitions until, finally, it will produce flowers instead of leaves and shoots. Members of the Arabidopsis SBP-box gene family of transcription factors have been implicated in promoting the floral(More)
The Arabidopsis thaliana SPL gene family represents a group of structurally diverse genes encoding putative transcription factors found apparently only in plants. The distinguishing characteristic of the SPL gene family is the SBP-box encoding a conserved protein domain of 76 amino acids in length, the SBP-domain, which is responsible for the interaction(More)
Anomalous flowering of the Antirrhinum majus mutant squamosa (squa) is characterized by excessive formation of bracts and the production of relatively few and often malformed or incomplete flowers. To study the function of squamosa in the commitment of an inflorescence lateral meristem to floral development, the gene was cloned and its genomic structure, a(More)
Flowering time mutants represent genetic functions in control of the floral transition, an important developmental phase switch in the life cycle of higher plants. Many such mutants have been identified and characterized, particular in Arabidopsis. Here we describe the identification and initial characterization of a new early flowering mutant of(More)
Visual screening of a T-DNA mutagenised population of Arabidopsis thaliana for an absence of silique elongation lead to the isolation of the aborted microspores (ams) mutant that shows a sporophytic recessive male sterile phenotype. Homozygous mutant plants are completely devoid of mature pollen. Pollen degeneration occurs shortly after release of the(More)
We describe lacerata (lcr) mutants of Arabidopsis, which display various developmental abnormalities, including postgenital organ fusions, and report cloning of the LCR gene by using the maize transposon Enhancer/Suppressor-mutator (En/Spm). The pleiotropic mutant phenotype could be rescued by genetic complementation of lcr mutants with the wild-type LCR(More)
In plants, extracellular matrix polymers built from polysaccharides and cuticular lipids have structural and protective functions. The cuticle is found to be ten times thinner in Arabidopsis thaliana (L.) Heynh than in many other plants, and there is evidence that it is unusual in having a high content of alpha-,omega-dicarboxylic fatty acids (FAs) in its(More)