Heinz D. Osiewacz

Learn More
We used electron cryotomography to study the molecular arrangement of large respiratory chain complexes in mitochondria from bovine heart, potato, and three types of fungi. Long rows of ATP synthase dimers were observed in intact mitochondria and cristae membrane fragments of all species that were examined. The dimer rows were found exclusively on tightly(More)
Podospora anserina is a filamentous fungus with a limited life span. Life span is controlled by nuclear and extranuclear genetic traits. Herein we report the nature of four alterations in the nuclear gene grisea that lead to an altered morphology, a defect in the formation of female gametangia, and an increased life span. Three sequence changes are located(More)
We have previously shown that the control of cellular copper homeostasis by the copper-modulated transcription factor GRISEA has an important impact on the phenotype and lifespan of Podospora anserina. Here we demonstrate that copper depletion leads to the induction of an alternative respiratory pathway and to an increase in lifespan. This response(More)
Degradation of damaged proteins by members of the protein quality control system is of fundamental importance in maintaining cellular homeostasis. In mitochondria, organelles which both generate and are targets of reactive oxygen species (ROS), a number of membrane bound and soluble proteases are essential components of this system. Here we describe the(More)
Ageing of biological systems is accompanied by alterations in mitochondrial morphology, including a transformation from networks and filaments to punctuate units. The significance of these alterations with regard to ageing is not known. Here, we demonstrate that the dynamin-related protein 1 (Dnm1p), a mitochondrial fission protein conserved from yeast to(More)
Podospora anserina is a filamentous fungus with a limited lifespan. After a strain-specific period of growth, cultures turn to senescence and ultimately die. Here we provide evidence that the last step in the ageing of P. anserina is not accidental but programmed. In this study, PaAMID1, a homologue of a mammalian 'AIF-homologous mitochondrion-associated(More)
The linear mitochondrial plasmid pAL2-1 of the long-lived mutant AL2 of Podospora anserina was demonstrated to be able to integrate into the high molecular weight mitochondrial DNA (mtDNA). Hybridization analysis and densitometric evaluation of the mitochondrial genome isolated from cultures of different ages revealed that the mtDNA is highly stable during(More)
Filamentous fungi are of great importance in ecology, agriculture, medicine, and biotechnology. Thus, it is not surprising that genomes for more than 100 filamentous fungi have been sequenced, most of them by Sanger sequencing. While next-generation sequencing techniques have revolutionized genome resequencing, e.g. for strain comparisons, genetic mapping,(More)
The 5′ region and transcription initiation sites of the psbA-2 and psbA-3 genes of Synechocystis 6803 were determined. The otherwise highly homologous genes were shown to diverge significantly in the 5′ noncoding regions. The transcription start site for the psbA-2 gene was mapped to position — 49 upstream of the coding region and for the psbA-3 gene to(More)
A global depletion of cellular copper as the result of a deficiency in high-affinity copper uptake was previously shown to affect the phenotype and life span of the filamentous fungus Podospora anserina. We report here the construction of a strain in which the delivery of copper to complex IV of the mitochondrial respiratory chain is affected. This strain,(More)