Heinz D. Osiewacz

Andrea Hamann4
Christian Q. Scheckhuber3
4Andrea Hamann
3Christian Q. Scheckhuber
Learn More
Mitochondrial dynamics and mitophagy play a key role in ensuring mitochondrial quality control. Impairment thereof was proposed to be causative to neurodegenerative diseases, diabetes, and cancer. Accumulation of mitochondrial dysfunction was further linked to aging. Here we applied a probabilistic modeling approach integrating our current knowledge on(More)
  • Christian Q. Scheckhuber, Koen Houthoofd, Andrea C. Weil, Alexandra Werner, Annemie De Vreese, Jacques R. Vanfleteren +1 other
  • 2011
The retrograde response constitutes an important signalling pathway from mitochondria to the nucleus which induces several genes to allow compensation of mitochondrial impairments. In the filamentous ascomycete Podospora anserina, an example for such a response is the induction of a nuclear-encoded and iron-dependent alternative oxidase (AOX) occurring when(More)
A global depletion of cellular copper as the result of a deficiency in high-affinity copper uptake was previously shown to affect the phenotype and life span of the filamentous fungus Podospora anserina. We report here the construction of a strain in which the delivery of copper to complex IV of the mitochondrial respiratory chain is affected. This strain,(More)
PaMTH1 is an O-methyltransferase catalysing the methylation of vicinal hydroxyl groups of polyphenols. The protein accumulates during ageing of Podospora anserina in both the cytosol and in the mitochondrial matrix. The construction and characterisation of a PaMth1 deletion strain provided additional evidence about the function of the protein in the(More)
Mitochondrial maintenance crucially depends on the quality control of proteins by various chaperones, proteases and repair enzymes. While most of the involved components have been studied in some detail, little is known on the biological role of the CLPXP protease complex located in the mitochondrial matrix. Here we show that deletion of PaClpP, encoding(More)
  • Christian Q. Scheckhuber, Sandra J. Mack, Ingmar Strobel, Filomena Ricciardi, Suzana Gispert, Heinz D. Osiewacz
  • 2010
The eukaryotic glyoxalase system consists of two enzymatic components, glyoxalase I (lactoylglutathione lyase) and glyoxalase II (hydroxyacylglutathione hydrolase). These enzymes are dedicated to the removal of toxic α-oxoaldehydes like methylglyoxal (MG). MG is formed as a by-product of glycolysis and MG toxicity results from its damaging capability(More)
  • Mikhail V. Blagosklonny, Judy Campisi, David A. Sinclair, Andrzej Bartke, Maria A. Blasco, William M. Bonner +29 others
  • 2010
The Editorial Board of Aging reviews research papers published in 2009, which they believe have or will have significant impact on aging research. Among many others, the topics include genes that accelerate aging or in contrast promote longevity in model organisms, DNA damage responses and telomeres, molecular mechanisms of life span extension by calorie(More)
  • Christian Q. Scheckhuber, Jürgen Grief, Emmanuelle Boilan, Karin Luce, Florence Debacq-Chainiaux, Claudia Rittmeyer +4 others
  • 2009
In previous investigations an impact of cellular copper homeostasis on ageing of the ascomycete Podospora anserina has been demonstrated. Here we provide new data indicating that mitochondria play a major role in this process. Determination of copper in the cytosolic fraction using total reflection X-ray fluorescence spectroscopy analysis and eGfp reporter(More)
Aging of biological systems is accompanied by degeneration of mitochondrial functions. Different pathways are active to counteract the processes which lead to mitochondrial dysfunction. Mitochondrial dynamics, the fission and fusion of mitochondria, is one of these quality control pathways. Mitophagy, the controlled degradation of mitochondria, is another(More)
The regulation of cellular copper homeostasis is crucial in biology. Impairments lead to severe dysfunctions and are known to affect aging and development. Previously, a loss-of-function mutation in the gene encoding the copper-sensing and copper-regulated transcription factor GRISEA of the filamentous fungus Podospora anserina was reported to lead to(More)