Learn More
The inhibitory glycine receptor (GlyR) is a ligand-gated ion channel which mediates post-synaptic inhibition in spinal cord and other regions of the vertebrate central nervous system. Previous biochemical and molecular cloning studies have indicated heterogeneity of GlyRs during development. Here, the distribution of GlyR subunit transcripts in rat brain(More)
Glycine receptors are anchored at inhibitory chemical synapses by a cytoplasmic protein, gephyrin. Molecular cloning revealed the similarity of gephyrin to prokaryotic and invertebrate proteins essential for synthesizing a cofactor required for activity of molybdoenzymes. Gene targeting in mice showed that gephyrin is required both for synaptic clustering(More)
Purified preparations of the inhibitory glycine receptor (GlyR) contain alpha and beta subunits, which share homologous primary structures and a common transmembrane topology with other members of the ligand-gated ion channel superfamily. Here, a beta subunit-specific antiserum was shown to precipitate the [3H]strychnine binding sites localized on alpha(More)
The mechanisms underlying the postsynaptic localization of neurotransmitter receptors are poorly understood. Recently, the peripheral membrane protein gephyrin has been shown to be essential for the formation of inhibitory glycine receptor clusters in cultured rat spinal cord neurons. In vitro gephyrin binds with high affinity to polymerized tubulin. Here,(More)
The glycine receptor of rat spinal cord is an oligomeric membrane glycoprotein of molecular mass 250,000 daltons that contains three polypeptides of 48,000, 58,000, and 93,000 daltons. Monoclonal antibodies (mAbs) were prepared against the affinity-purified glycine receptor protein by using 125I-labeled receptor preparations for the detection of positive(More)
The tubulin-binding protein gephyrin, which anchors the inhibitory glycine receptor (GlyR) at postsynaptic sites, decorates GABAergic postsynaptic membranes in various brain regions, and postsynaptic gephyrin clusters are absent from cortical cultures of mice deficient for the GABA(A) receptor gamma2 subunit. Here, we investigated the postsynaptic(More)
Inhibitory glycine receptors (GlyRs) regulate motor coordination and sensory signal processing in spinal cord and other brain regions. GlyRs are pentameric proteins composed of membrane-spanning alpha and beta subunits. Here, site-directed mutagenesis combined with homology modeling based on the crystal structure of the acetylcholine binding protein(More)
In the mammalian CNS, each neuron typically receives thousands of synaptic inputs from diverse classes of neurons. Synaptic transmission to the postsynaptic neuron relies on localized and transmitter-specific differentiation of the plasma membrane with postsynaptic receptor, scaffolding, and adhesion proteins accumulating in precise apposition to(More)
NMDA receptors require both L-glutamate and the coagonist glycine for efficient channel activation. The glycine binding site of these heteromeric receptor proteins is formed by regions of the NMDAR1 (NR1) subunit that display sequence similarity to bacterial amino acid binding proteins. Here, we demonstrate that the glutamate binding site is located on the(More)
The glycine transporter subtype 1 (GlyT1) is widely expressed in astroglial cells throughout the mammalian central nervous system and has been implicated in the regulation of N-methyl-D-aspartate (NMDA) receptor activity. Newborn mice deficient in GlyT1 are anatomically normal but show severe motor and respiratory deficits and die during the first postnatal(More)