Heiner Linke

Learn More
A rigorous numerical test of a hypothetical mechanism of a molecular motor should model explicitly the diffusive motion of the motor's degrees of freedom as well as the transition rates between the motor's chemical states. We present such a Brownian dynamics, mechanochemcial model of the coarse-grain structure of the dimeric, linear motor myosin V. Compared(More)
The effective diffusion coefficient for the overdamped Brownian motion in a tilted periodic potential is calculated in closed analytical form. Universality classes and scaling properties for weak thermal noise are identified near the threshold tilt where deterministic running solutions set in. In this regime the diffusion may be greatly enhanced, as(More)
An exact analytical expression for the effective diffusion coefficient of an overdamped Brownian particle in a tilted periodic potential is derived for arbitrary potentials and arbitrary strengths of the thermal noise. Near the critical tilt (threshold of deterministic running solutions) a scaling behavior for weak thermal noise is revealed and various(More)
We tested a health education intervention program to reduce passive smoking in infancy. The aim was to develop an instrument for study of tobacco smoke exposure and childhood respiratory illness. One hundred and eighty-four women who had smoked during pregnancy were allocated by month of delivery to an intervention group, to a minimal contact group, or to a(More)
Irreversible effects in thermoelectric materials limit their efficiency and economy for applications in power generation and refrigeration. While electron transport is unavoidably irreversible in bulk materials, here we derive conditions under which reversible diffusive electron transport can be achieved in nanostructured thermoelectric materials. We(More)
Brownian motors are nonequilibrium systems that rectify thermal fluctuations to achieve directed motion, using spatial or temporal asymmetry. We provide a tutorial introduction to this basic concept using the well-known example of a flashing ratchet, discussing the micro- to nanoscopic scale on which such motors can operate. Because of the crucial role of(More)
A flashing ratchet transports diffusive particles using a time-dependent, asymmetric potential. The particle speed is predicted to increase when a feedback algorithm based on the particle position is used. We have experimentally realized such a feedback ratchet using an optical line trap, and observed that use of feedback increases velocity by up to an(More)
Semiconductor nanowire arrays offer significant potential for biosensing applications with optical read-out due to their high surface area and due to the unique optical properties of one-dimensional materials. A challenge for optical read-out of analyte-binding to the nanowires is the need to efficiently collect and detect light from a three-dimensional(More)
Conventional thermionic power generators and refrigerators utilize a barrier in the direction of transport to selectively transmit high-energy electrons, resulting in an energy spectrum of electrons that is not optimal for high efficiency or high power. Here, we derive the ideal energy spectrum for achieving maximum power in thermionic refrigerators and(More)
Investigations into molecular motor dynamics are increasingly focused on small-scale features of the motor's motion. We define performance measures of a common type of single-molecule motility assay, the bead assay, for its ability to detect such features. Using numerical models, we explore the dependence of assay performance on a number of experimentally(More)