Heiner Deubel

Learn More
The spatial interaction of visual attention and saccadic eye movements was investigated in a dual-task paradigm that required a target-directed saccade in combination with a letter discrimination task. Subjects had to saccade to locations within horizontal letter strings left and right of a central fixation cross. The performance in discriminating between(More)
In a series of experiments, we examined the increase in saccade latency that is observed consistently when distractor stimuli are presented simultaneously with the saccade target at various nontarget locations. In the first experiment, targets and distractors were presented on the horizontal axis. We found that saccade latency was increased when distractors(More)
Adaptive reduction of the gain of the saccadic system was induced by means of two basically different paradigms. In the first approach the subjects had to follow a step-wise moving target. During each follow-up saccade the target was systematically displaced by 25% of the initial step, into the opposite direction of the saccade. In the second approach the(More)
Displacement of a visual target during a saccadic eye movement is normally detected only at a high threshold, implying that high-quality information about target position is not stored in the nervous system across the saccade. We show that blanking the target for 50-300 msec after a saccade restores sensitivity to the displacement. With blanking, subjects(More)
The dynamics of the allocation of attention during the preparation of saccadic eye movements was studied in a dual task paradigm. As the primary task, participants had to perform a saccade to letter-like items arranged on a clock face. The secondary task was a 2AFC discrimination task in which a discrimination target (DT) ('E' or '3') was presented among(More)
Properties of gain adaptivity in the saccadic system were studied. Subjects had to track a target which moved in single or double steps. The first target step which elicited the primary saccade had an amplitude in the range of 8-16 deg. The primary saccade triggered a further target displacement of 4 deg either in the same or--in different experimental(More)
We examined the allocation of attention during the preparation of sequences of manual pointing movements in a dual task paradigm. As the primary task, the participants had to perform a sequence of two or three reaching movements to targets arranged on a clock face. The secondary task was a 2AFC discrimination task in which a discrimination target (digital(More)
We recently demonstrated that the perceived stability of a visual target that is displaced during a saccade critically depends on whether the target is present immediately when the saccade ends; blanking a target during and just after a saccade makes its intra-saccadic displacement more visible (Deubel et al. Vis Res 1996;36:985-996). Here, we investigate(More)
Many cells in retinotopic brain areas increase their activity when saccades (rapid eye movements) are about to bring stimuli into their receptive fields. Although previous work has attempted to look at the functional correlates of such predictive remapping, no study has explicitly tested for better attentional performance at the future retinal locations of(More)