Heiko von der Mosel

Learn More
We derive the Euler-Lagrange equations for nonlinearly elastic rods with self-contact. The excluded-volume constraint is formulated in terms of an upper bound on the global curvature of the centre line. This condition is shown to guarantee the global injectivity of the deformation of the elastic rod. Topological constraints such as a prescribed knot and(More)
The attractive and spacing interaction between pairs of filaments via cross-linkers, e.g. myosin oligomers connecting actin filaments, is modeled by global integral kernels for negative binding energies between two intersecting stiff and long rods in a (projected) two-dimensional situation, for simplicity. Whereas maxima of the global energy functional(More)
  • 1