Learn More
Fluorescence microscopy combined with digital imaging constructs a basic platform for numerous biomedical studies in the field of cellular imaging. As the studies relying on analysis of digital images have become popular, the validation of image processing methods used in automated image cytometry has become an important topic. Especially, the need for(More)
Thesis for the degree of Doctor of Technology to be presented with due permission for public examination and criticism in Auditorium HB116, Hermitec at Tampere University of Technology, on the 31st of March 2000, at 12 o'clock noon. Abstract In this thesis, nonlinear locally adaptive techniques of noise removal and restoration are considered for image(More)
BACKGROUND Periodic phenomena are widespread in biology. The problem of finding periodicity in biological time series can be viewed as a multiple hypothesis testing of the spectral content of a given time series. The exact noise characteristics are unknown in many bioinformatics applications. Furthermore, the observed time series can exhibit other(More)
— In this paper, the use of multi label neural networks are proposed for detection of temporally overlapping sound events in realistic environments. Real-life sound recordings typically have many overlapping sound events, making it hard to recognize each event with the standard sound event detection methods. Frame-wise spectral-domain features are used as(More)
Mild cognitive impairment (MCI) is a transitional stage between age-related cognitive decline and Alzheimer's disease (AD). For the effective treatment of AD, it would be important to identify MCI patients at high risk for conversion to AD. In this study, we present a novel magnetic resonance imaging (MRI)-based method for predicting the MCI-to-AD(More)
In this paper, we consider the problem of multinomial classification of magnetoencephalography (MEG) data. The proposed method participated in the MEG mind reading competition of ICANN’11 conference, where the goal was to train a classifier for predicting the movie the test person was shown. Our approach was the best among ten submissions, reaching accuracy(More)
This paper proposes the use of a deep neural network for the recognition of isolated acoustic events such as footsteps, baby crying, motorcycle, rain etc. For an acoustic event classification task containing 61 distinct classes, classification accuracy of the neural network classifier (60.3%) excels that of the conventional Gaussian mixture model based(More)