Learn More
Leptin acts on the brain to regulate body weight and neuroendocrine function. Proopiomelanocortin (POMC) neurons in the hypothalamus are important targets of leptin. These cells express the leptin receptor ObRb, and leptin can regulate POMC mRNA levels, but the cellular mechanisms by which this occurs is unknown. Here we show evidence that leptin stimulates(More)
Leptin acts via its receptor (LepRb) on specific CNS neurons to signal the adequacy of long-term energy stores, thereby permitting the expenditure of resources on energy-intensive processes such as reproduction. The ventral premammillary nucleus of the hypothalamus (PMv), which has been implicated in the stimulation of gonadotropin release by olfactory(More)
The adipose tissue-derived hormone leptin acts via its receptor (LRb) in the brain to regulate energy balance and neuroendocrine function. LRb signaling via STAT3 and a number of other pathways is required for the totality of leptin action. The failure of elevated leptin levels to suppress feeding and mediate weight loss in common forms of obesity defines a(More)
In mammals, males consume more food, which is considered a masculinized behavior, but the underlying mechanism of this sex-specific feeding behavior is unknown. In mice, neonatal testosterone (NT) is critical to masculinize the developing brain, leading to sex differences in reproductive physiology. The proopiomelanocortin (POMC) neurons of the hypothalamic(More)
The lateral hypothalamic area (LHA) acts in concert with the ventral tegmental area (VTA) and other components of the mesolimbic dopamine (DA) system to control motivation, including the incentive to feed. The anorexigenic hormone leptin modulates the mesolimbic DA system, although the mechanisms underlying this control have remained incompletely(More)
The increasing incidence of obesity in developed nations is an ever-growing challenge to health care, promoting diabetes and other diseases. The hormone leptin, which is derived from adipose tissue, regulates feeding and energy expenditure. Most forms of obesity are associated with diminished responsiveness to the appetite-suppressing effects of leptin.(More)
Leptin and insulin have been identified as fuel sensors acting in part through their hypothalamic receptors to inhibit food intake and stimulate energy expenditure. As their intracellular signaling converges at the PI3K pathway, we directly addressed the role of phosphatidylinositol3,4,5-trisphosphate-mediated (PIP3-mediated) signals in hypothalamic(More)
The mammalian target of rapamycin (mTOR) promotes anabolic cellular processes in response to growth factors and metabolic cues. The TSC1 and TSC2 tumor suppressors are major upstream inhibitory regulators of mTOR signaling. Mice with Rip2/Cre-mediated deletion of Tsc1 (Rip-Tsc1cKO mice) developed hyperphagia and obesity, suggesting that hypothalamic(More)
We present a consolidated view of the complexity and challenges of designing studies for measurement of energy metabolism in mouse models, including a practical guide to the assessment of energy expenditure, energy intake and body composition and statistical analysis thereof. We hope this guide will facilitate comparisons across studies and minimize(More)
Brown adipose tissue (BAT) thermogenesis is critical to maintain homoeothermia and is centrally controlled via sympathetic outputs. Body temperature and BAT activity also impact energy expenditure, and obesity is commonly associated with decreased BAT capacity and sympathetic tone. Severely obese mice that lack leptin or its receptor (LepRb) show decreased(More)