Heike Emmerich

Learn More
A model for the phase transition between partial wetting and dewetting of a substrate has been formulated that explicitly incorporates the hydrodynamic flow during the dewetting process in 1+1 dimensions. The model simulates a fluid layer of finite thickness on a substrate in coexistence with a dry part of the substrate and a gas phase above the substrate.(More)
  • H Emmerich
  • 2009
Phase-field modelling, as it is understood today, is still a young discipline in condensed matter physics, which established itself for that class of systems in condensed matter physics, which can be characterized by domains of different phases separated by a distinct interface. Driven out of equilibrium, their dynamics results in the evolution of those(More)
We present a mean field theory for melts and solutions of reversibly crosslinked polymers. In our model, crosslinks are considered as local bonds between two monomers. For a blend of A+B+AB polymers, we assume reversible crosslinks between the copolymers AB with a crosslink strength z and interaction weights ω(A) and ω(B) for monomers of type A and B,(More)
Phase-field-crystal (PFC) modeling has emerged as a computationally efficient tool to address crystal growth phenomena on atomistic length and diffusive time scales. We use a two-dimensional phase-field-crystal model for a binary system based on Elder et al. [Phys. Rev. B 75, 064107 (2007)] to study critical nuclei and their liquid-solid phase boundaries,(More)
We derive a generalized model for isotropic as well as anisotropic crystal lattice systems of arbitrary Poisson ratio within the framework of the continuum phase-field crystal (PFC) approach (Elder and Grant 2004 Phys. Rev. E 70 051606). To this end we extend the simplest PFC model defined by a free energy functional, which is based upon the Swift-Hohenberg(More)
In this work we present experimental and theoretical investigations of the directional solidification of Al-36 wt% Ni alloy. A phase-field approach (Folch and Plapp 2005 Phys. Rev. E 72 011602) is coupled with the CALPHAD (calculation of phase diagrams) method to be able to simulate directional solidification of Al-Ni alloy including the peritectic phase(More)
Colloidal quasicrystals have received increased interest recently due to new insight in exploring their potential for photonic materials as well as for optical devices [Vardeny et al., Nat. Photonics, 2013, 7, 177]. Colloidal quasicrystals in aqueous solutions have been found in systems of micelles with impenetrable cores [Fischer et al., Proc. Natl. Acad.(More)
The application of phase-field modeling to nucleation as a phenomenon at the nanoscale is justified, if one takes into account the great success of continuum approaches in nanofluidics as proven by the many comparisons to experiments. Employed in this manner it provides an approach allowing us to account for effects of the physical diffuseness of a nucleus'(More)
We report on the lattice location of ion implanted Fe, Cu, and Ag impurities in germanium from a combined approach of emission channeling experiments and ab initio total energy calculations. Following common expectation, a fraction of these transition metals (TMs) was found on the substitutional Ge position. Less expected is the observation of a second(More)